Quark Recombination and **Fragmentation**

C. R. Ji

In collaboration with Profs. B. Hong and D.-P. Min

Motivation of HI Collisions

- 1. Quarks and Gluons exist, but not detected individually at $T=0$. Temperature Dependence of Confinement and Chiral Symmetry
- 2. High-energy nuclear collisions will compress and heat the heavy nuclei so much that their individual protons and neutrons overlap and lots of pions arise, creating the Quark-Gluon Plasma (QGP)

QGP is thought to have existed ten millionths of second after the Big Bang; creating the primordial matter of universe in the laboratory.

- 3. RHIC obtained distinguished results from CERN SPS.
	- Jet Quenching and Bulk Hadronization (Winner of recent NSAC meeting).
- 4. LHC ALICE (CMS, ATLAS) would need theoretical predictions at energy 30-fold energy increase from RHIC.

Outline

- Brief Overview on State Changes Chemical and Thermal Freeze-outs
- Hadronization Mechanisms Quark Recombination and Fragmentation
- Numerical Results Wavefunction Dependence on P_T Spectra, Ratio between proton and antiproton, etc...

• Discussion and Conclusion BCS-BEC Crossover, Heavy quark systems, etc...

Simulation by the Frankfurt Group

- Heavy Ion Collision
	- Hard Scattering and High P_T Fragmentation
- Formation of QGP
	- $T \gg T_c \approx 175$ MeV
- Expansion and
- Cooling
- Hadronization from QGP
	- $-$ Intermediate P_T (2-5 GeV)
- Chemical Etientian and Freeze-out (T_C \approx 175 MeV)
	- $-$ Inelastic Channels (e.g. Δ \leftrightarrow pπ)
	- Number of each hadron species doesn't change
- Thermal Equilibrium
	- Elastic Scatterings Dominant
	- Interaction still exists (MFP > DBP)
- Continued Expansion and Thermal Freeze-out
	- Particle distance gets larger (DBP > MFP)
	- No further elastic collisions but still heavy particles can decay into light particles (e.g. $\Delta \rightarrow P \pi$): T_{freeze-out}≈120 MeV

Nuclear Phase Diagram

Heavy-Ion Accelerators

Relativistic Heavy Ion Collider

❑*Brookhaven National Lab. in New York*

✓**Circumference: 3.83 km** ✓**First collision: 2000** ✓**100A GeV Au+Au(2X10²⁶/cm²/s)** $\sqrt{250}$ GeV \vec{p} + \vec{p} (2X10³²/cm²/s)

Hadronization Mechanisms

Recombination of a Quark-Antiquark Pair

$$
N_M = \sum_{ab} \int \frac{d^3 P}{\left(2\pi\right)^3} < M; P \left| \hat{\rho}_{ab} \right| M; P > \frac{1}{2} \left(\frac{d^3 P}{2\pi} \right)^3
$$

$$
E\frac{dN_M}{d^3P} = C_M \int_{\Sigma} \frac{d^3RP \cdot u(R)}{(2\pi)^3} \int \frac{d^3q}{(2\pi)^3} w_a(R; \frac{P}{2} - q) \Phi_M^W(q) w_b(R; \frac{P}{2} + q)
$$

=
$$
C_M \int_{\Sigma} \frac{d^3RP \cdot u(R)}{(2\pi)^3} \int \frac{dxP^+d^2k_\perp}{(2\pi)^3} w_a(R; xP^+, k_\perp) |\psi_M(x, k_\perp)|^2 w_b(R; (1-x)P^+, -k_\perp)
$$

where

 $\Phi_M^W(q) = \int d^3r \Phi_M^W(r, q)$ in Wigner Function Formalism *M W M*

$$
w_a(R; p) = \gamma_a e^{-p \cdot v(R)/T} e^{-\eta^2/2\Delta^2} f(\rho, \phi)
$$

$$
f(\rho, \phi) \approx \Theta(\rho_0 - \rho)
$$

Extended Recombination Formalism

$$
\frac{dN_{M}}{d^{2}P_{T}dy}\Big|_{y=0} = C_{M}M_{T}\frac{V}{(2\pi)^{3}}2\gamma_{a}\gamma_{b}I_{0}\left[\frac{P_{T}\sinh\,\eta_{T}}{T}\right]\int_{0}^{1}dx\int_{0}^{\infty}d^{2}k_{\perp}|\psi(x,k_{\perp})|^{2}k_{M}(x,k_{\perp},P_{T})
$$
\nwhere\n
$$
k_{M}(x,k_{\perp},P_{T}) = K_{1}\left[\frac{\cosh\eta_{T}}{T}\left[\sqrt{m_{a}^{2}+(xP_{T}+k_{\perp})^{2}}+\sqrt{m_{b}^{2}+\left\{(1-x)P_{T}-k_{\perp}\right\}^{2}}\right]\right]
$$

$$
\psi_{Gauss}(x, k_{\perp}) = \text{Exp}\left[-\left(\frac{m_a^2 + k_{\perp}^2}{x} + \frac{m_b^2 + k_{\perp}^2}{1 - x}\right)/\beta^2\right]
$$

$$
\psi_{Power}(x, k_{\perp}) = 1/(\frac{m_a^2 + k_{\perp}^2}{x} + \frac{m_b^2 + k_{\perp}^2}{1 - x} + \alpha^2)^n
$$

Light-Front Wavefunctions

Gaussian vs. Power Law

Fragmentation and Jet Quenching

Numerical Results

- 1. Single Particle Spectra
- 2. Particle Ratios
- 3. Nuclear Modification Factor *Rcp*
- 4. Wave Function Dependence
	- Gaussian vs. Power Law
- 5. Prediction for D-meson Production at RHIC and LHC

Comparison of Particle Ratios

Comparison of Particle Ratios

Comparison of Particle Ratios

Comparison of Nuclear Modification

Gaussian vs. Power Law

Heavy Quark Distribution Function

RHIC

Heavy Quark Distribution Function

LHC

Prediction of D-Meson Spectra

Conclusions and Outlook

- Extended the formulation of the recombination model
	- Intrinsic transverse momentum effect
	- Light-Front wavefunction
		- Gaussian vs. Power Law
- Found the sensitivity of the wavefunction dependence
	- Recombination is favored by the larger size hadrons
- Different results on the yield ratios of K-/K+ and pbar/p – Jet quenching effect is included
- Our extended formulation may be useful for the analysis of the QGP nature
	- Possible formation of the binary system
	- Crossover between BCS and BEC via Feshbach resonances
- Plan to investigate
	- Heavy hadron production
	- Elliptic flow

Food for Thoughts: Binary Bound States in QGP

Bose-Einstein Condensation

Hydrodynamical Expansion of Trapped Atoms

Analogous to Elliptic Flows in RHIC Data

Crossover between BCS and BEC

Controlling Parameters

- High Tc Superconductors: Doping Holes
- Ultracold Trapped Atoms: Applying Magnetic Fields
- RHIC:

Changing s_{NN} and Projectiles, etc.