Quark Recombination and Fragmentation

C. R. Ji

In collaboration with Profs. B. Hong and D.-P. Min

Motivation of HI Collisions

- Quarks and Gluons exist, but not detected individually at T=0. Temperature Dependence of Confinement and Chiral Symmetry
- 2. High-energy nuclear collisions will compress and heat the heavy nuclei so much that their individual protons and neutrons overlap and lots of pions arise, creating the Quark-Gluon Plasma (QGP)

QGP is thought to have existed ten millionths of second after the Big Bang; creating the primordial matter of universe in the laboratory.

- 3. RHIC obtained distinguished results from CERN SPS.
 - Jet Quenching and Bulk Hadronization (Winner of recent NSAC meeting).
- 4. LHC ALICE (CMS, ATLAS) would need theoretical predictions at energy 30-fold energy increase from RHIC.

<u>Outline</u>

- Brief Overview on State Changes
 Chemical and Thermal Freeze-outs
- Hadronization Mechanisms
 Quark Recombination and Fragmentation
- Numerical Results
 Wavefunction Dependence on P_T Spectra, Ratio between proton and antiproton, etc...

• Discussion and Conclusion BCS-BEC Crossover, Heavy quark systems, etc...

Simulation by the Frankfurt Group

- Heavy Ion Collision
 - Hard Scattering and High P_{T} Fragmentation
- Formation of QGP
 - $T \gg T_{C} \approx 175 \text{ MeV}$
- Expansion and
- Cooling
- HadronTzation from QGP
 - Intermediate P_T (2-5 GeV)
- CReminationilibrium and Freeze-out ($T_c \approx 175$ MeV)
 - Inelastic Channels (e.g. Δ↔pπ)
 - Number of each hadron species doesn't change
- Thermal Equilibrium
 - Elastic Scatterings Dominant
 - Interaction still exists (MFP > DBP)
- Continued Expansion and Thermal Freeze-out
 - Particle distance gets larger (DBP > MFP)
 - No further elastic collisions but still heavy particles can decay into light particles (e.g. Δ→Pπ): T_{freeze-out}≈120 MeV

Nuclear Phase Diagram

Heavy-Ion Accelerators

Accelerator	c.m. Energy (GeV)	Status
SIS 18 (GSI, Germany)	2A (A=mass number)	Running
AGS (BNL, USA)	5A	Finished
SIS 300 (GSI, Germany)	8A	Plan to run from ~2014
SPS (CERN, Switzerland)	20A	Finish soon
RHIC (BNL, USA)	200A	Running
LHC (CERN, Switzerland)	5500A	Plan to run from ~2007

Relativistic Heavy Ion Collider

Brookhaven National Lab. in New York

✓ Circumference: 3.83 km ✓ First collision: 2000 ✓ 100A GeV Au+Au(2X10²⁶/cm²/s) ✓ 250 GeV \vec{p} + \vec{p} (2X10³²/cm²/s)

Hadronization Mechanisms

Recombination of a Quark-Antiquark Pair

$$N_{M} = \sum_{ab} \int \frac{d^{3}P}{(2\pi)^{3}} < M; P |\hat{\rho}_{ab}| M; P >$$

$$E\frac{dN_{M}}{d^{3}P} = C_{M} \int_{\Sigma} \frac{d^{3}RP \cdot u(R)}{(2\pi)^{3}} \int \frac{d^{3}q}{(2\pi)^{3}} w_{a}(R; \frac{P}{2} - q) \Phi_{M}^{W}(q) w_{b}(R; \frac{P}{2} + q)$$

$$= C_{M} \int_{\Sigma} \frac{d^{3}RP \cdot u(R)}{(2\pi)^{3}} \int \frac{dxP^{+}d^{2}k_{\perp}}{(2\pi)^{3}} w_{a}(R; xP^{+}, k_{\perp}) |\psi_{M}(x, k_{\perp})|^{2} w_{b}(R; (1 - x)P^{+}, -k_{\perp})$$

where

 $\Phi_M^W(q) = \int d^3 r \Phi_M^W(r,q)$ in Wigner Function Formalism

$$w_a(R;p) = \gamma_a e^{-p \cdot v(R)/T} e^{-\eta^2/2\Delta^2} f(\rho,\phi)$$
$$f(\rho,\phi) \approx \Theta(\rho_0 - \rho)$$

Extended Recombination Formalism

$$\frac{dN_{M}}{d^{2}P_{T}dy}\Big|_{y=0} = C_{M}M_{T}\frac{V}{(2\pi)^{3}}2\gamma_{a}\gamma_{b}I_{0}\left[\frac{P_{T}\sinh\eta_{T}}{T}\right]\int_{0}^{1}dx\int_{0}^{\infty}d^{2}k_{\perp}\left|\psi(x,k_{\perp})\right|^{2}k_{M}(x,k_{\perp},P_{T})$$

where
$$k_{M}(x,k_{\perp},P_{T}) = K_{1}\left[\frac{\cosh\eta_{T}}{T}\left[\sqrt{m_{a}^{2}+(xP_{T}+k_{\perp})^{2}}+\sqrt{m_{b}^{2}+\left\{(1-x)P_{T}-k_{\perp}\right\}^{2}}\right]\right]$$

$$\psi_{Gauss}(x,k_{\perp}) = \exp\left[-\left(\frac{m_a^2 + k_{\perp}^2}{x} + \frac{m_b^2 + k_{\perp}^2}{1 - x}\right)/\beta^2\right]$$
$$\psi_{Power}(x,k_{\perp}) = \frac{1}{\left(\frac{m_a^2 + k_{\perp}^2}{x} + \frac{m_b^2 + k_{\perp}^2}{1 - x} + \alpha^2\right)^n}{1 - x}$$

Light-Front Wavefunctions

Gaussian vs. Power Law

Fragmentation and Jet Quenching

$$\frac{E \frac{dN_{h}}{d^{3}P} = \sum_{a} \int_{0}^{1} \frac{dz}{z^{2}} D_{a \to h}(z) E_{a} \frac{dN_{a}}{d^{3}p_{a}}}{\left|\frac{dN_{a}}{d^{2}p_{T}dy}\right|_{y=0}} = K \frac{C}{(1+p_{T}/B)^{\kappa}} = K \frac{C}{(1+p_{T$$

50

15

 $\hat{q} [\text{GeV}^2/\text{fm}] =$

— 1, rw ---- 1

- 5, rw .____ 5

- 15. rw ----

45

----- 10, rw

40

 p_T [GeV]

0, no medium

Numerical Results

- 1. Single Particle Spectra
- 2. Particle Ratios
- 3. Nuclear Modification Factor R_{cp}
- 4. Wave Function Dependence
 - Gaussian vs. Power Law
- 5. Prediction for D-meson Production at RHIC and LHC

Comparison of Particle Ratios

Comparison of Particle Ratios

Comparison of Particle Ratios

Comparison of Nuclear Modification

2005-06-27

Comparison of Nuclear Modification

Gaussian vs. Power Law

Heavy Quark Distribution Function

RHIC

Heavy Quark Distribution Function

LHC

Prediction of D-Meson Spectra

Conclusions and Outlook

- Extended the formulation of the recombination model
 - Intrinsic transverse momentum effect
 - Light-Front wavefunction
 - Gaussian vs. Power Law
- Found the sensitivity of the wavefunction dependence
 - Recombination is favored by the larger size hadrons
- Different results on the yield ratios of K⁻/K⁺ and pbar/p

 Jet quenching effect is included
- Our extended formulation may be useful for the analysis of the QGP nature
 - Possible formation of the binary system
 - Crossover between BCS and BEC via Feshbach resonances
- Plan to investigate
 - Heavy hadron production
 - Elliptic flow

<u>Food for Thoughts:</u> <u>Binary Bound States in QGP</u>

channel	rep.	charge factor	no. of states
gg	1	9/4	9_s
gg	8	9/8	$9_s * 16$
$qg + \bar{q}g$	3	9/8	$3_c * 6_s * 2 * N_f$
$qg + \bar{q}g$	6	3/8	$6_c * 6_s * 2 * N_f$
$\bar{q}q$	1	1	$8_{s} * N_{f}^{2}$
$qq + \bar{q}\bar{q}$	3	1/2	$4_s * 3_c * 2 * N_f^2$

Bose-Einstein Condensation

Hydrodynamical Expansion of Trapped Atoms

Analogous to Elliptic Flows in RHIC Data

Crossover between BCS and BEC

Controlling Parameters

- High Tc Superconductors:
 Doping Holes
- Ultracold Trapped Atoms:
 Applying Magnetic Fields
- RHIC:

Changing s_{NN} and Projectiles, etc.