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Why fluctuations?
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• Sometimes physics is in the width.

• Thermodynamically interesting (heat capacity, ...).

• Bulk property : pT < 2GeV

Aren’t Correlation functions better?

• Yes, of course. More fundamental and lots more info. Fluc-

tuations are but a single aspect of them but easier to predict

than the whole function.



Interesting fluctuations
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• Multiplicity fluctuations (KNO? Thermal?)

• Energy fluctuation (Heat capacity?)

• ‘Charge’ fluctuation

– Electric charge (Fractional charges?)

– Baryon number (Fractional baryon number?)

– Strangeness (Gluon fragmentation?)

– Heavy quark number (Initial wave function?)

• Mean pT/mT fluctuation (Temperature? Heat capacity?)

• ....



Charge Transfer Fluctuations
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(Thomas, Quigg, Chao (1973), Shi, Jeon, hep-ph/0503085)

• Charge Transfer:

u(y) = [QF (y)−QB(y)] /2

where
QF (y) = Net charge in the forward region of y

QB(y) = Net charge in the backward region of y
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• u(y) = [QF (y)−QB(y)] /2

• Suppose a neutral cluster R decays near y.

– R −→ h+ + h− with a typical ∆y = λ

– For each R decay, u(y) changes by ±1 ==> Random walk

– Du(y) = 〈∆u(y)2〉 = Nsteps(y) ≈ λ
dNcluster

dy

– Since dNcluster/dy ∝ dNch/dy,

κ(y) ≡
Du(y)

dNch/dy
∝ λ(y)
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Charge Transfer Fluctuations
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κ(y) ≡
Du(y)

dNch/dy
∝ λ(y)

Constant κ(y): Thomas-Chao-Quigg

Relationship

• Measure of the local charge correlation length



Charge Transfer Fluctuations
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κ(y) ≡
Du(y)

dNch/dy
∝ λ(y)

Constant κ(y): Thomas-Chao-Quigg

Relationship

• Measure of the local charge correlation length

[Net charge fluct. and Balance func : Averaged inside the

obs. window]
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PP @ pmax = 200GeV
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Kafka et.al. PRL 34, 687, 1975
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• Measure of the local charge correlation length

[Net charge fluct. and Balance func : Averaged inside the

obs. window]

• In elementary particle collisions, κ(y) ≈ const

• If QGP has a much smaller λ, its presence should be reflected

in κ(y) ==> Captures inhomogeneity.
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Charge Transfer Fluctuations
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κ(y) ≡
Du(y)

dNch/dy
∝ λ(y)

Constant κ(y): Thomas-Chao-Quigg

Relationship

• Measure of the local charge correlation length

[Net charge fluct. and Balance func : Averaged inside the

obs. window]

• In elementary particle collisions, κ(y) ≈ const

• If QGP has a much smaller λ, its presence should be reflected

in κ(y) ==> Captures inhomogeneity.

– κAA < κPP

– κAA(y) : Significantly different from constant if QGP is

made only locally



In pictures
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Extent of QGP?
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• Comparing d-Au and Au-Au dN/dη (Vertical scaling + small

shifting (1 or 2 exp. bins))

• Same shapes outside the ‘plateau’ ! (Jeon, Bleicher, Topor

Pop, Phys.Rev.C69:044904,2004, nucl-th/0309077)
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How small is λQGP/λHG?
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• 〈∆Q2〉QGP/〈Nch〉 ≈ (1/3)〈∆Q2〉HG/〈Nch〉

(Fractional charges + gluons)

• If neutral clusters, this implies λQGP ≈ (1/3)λHG



Modeling
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“Correlation function has all the information.”

True. Any charge fluctuation observable measures a particular

aspect of

CQ(y, y′) = C++(y, y′) + C++(y, y′)− 2C+−(y, y′)

where

Cab(y, y′) =
dNab

dydy′
−

dNa

dy

dNb

dy′

• Different fluctuations emphasize different aspects of correla-

tion.

• Fluctuations allow physical interpretation of the features through

model studies.



Correlations
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• Relevant to fluctuations: Single particle distributions and 2-

particle correlation functions.

• Single particle distribution functions :

ρα(p)dp = Average number of α within dp around p.∫
∆η

dp ρα(p) = 〈Nα〉∆η (1)

• 2-particle correlation functions :

ραβ(p1, p2) dp1dp2 = Average number of αβ pairs within dp1dp2

around p1, p2∫
∆η

dp1dp2 ραβ(p1, p2) = 〈NαNβ〉∆η − δαβ〈Nα〉∆η (2)



A toy model – “ρ” gas
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• M± independently emitted ± particles “ρ±” ==> g±(p±)

• M0 neutral clusters “ρ0” ==> f0(p+, p−), g0(p) =
∫

dqf0(p, q)

– Single particle distributions

ρ±(p) = 〈M+〉 g±(p) + 〈M0〉g0(p) (3)
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– Two particle correlation functions

C++(p1, p2) ≡ ρ++(p1, p2)− ρ+(p1)ρ+(p2)

=
∑

a=+,0

∑
b=+,0

〈δMaδMb〉ga(p1)gb(p2)

− 〈M+〉g+(p1)g+(p2)− 〈M0〉g0(p1)g0(p2)

C+−(p1, p2) =
∑

a=+,0

∑
b=−,0

〈δMaδMb〉ga(p1)gb(p2)

+ 〈M0〉 [f0(p1, p2)− g0(p1)g0(p2)] (4)

If Poisson-like, all terms in Cαβ are O(M).

In ραβ, the leading term is O(M2) ==> f0 is hidden.



QGP vs. Hadron gas
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• Color fluctuation: Hadrons are all color neutral ==> Difficult

to observe color fluctuation

• Charge fluctuation: Quarks have fractional charges ==> Less

charge fluctuation per charged degree of freedom

• There are gluons: Gluons contribute to the entropy but not

to the charge fluctuation ==> Less charge fluctuation per

charged degree of freedom

Final hadron spectrum : Neutral rich



A Simple Neutral Cluster Model
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[Similar to the old ρ, ω model and Bialas et.al.’s Acta Phys.

Polon. B6, 39, 1975 model]

• Make up an event with M0 + M+ positive particles and

M0 + M− negative particles by sampling

ρ(y+, y−) = R(y+, y−|Y )F (Y )

M0 times for (+−) pairs and by sampling

g(y) ≈ F (y)

M± times for un-paired charged particles.

F (Y ) : Cluster rapidity distribution, Y = (y+ + y−)/2.

R(y+, y−|Y ) : Rapidity distribution of the daughters given Y .



Models
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• Different choices of R and F ==> Different Models

• For instance, Bialas et.al.’s model is equivalent to sampling

ρ75(y+, y−) = f(y+|Y )f(y−|Y )F (Y )

Correlation provided by integration over Y .

• Our model: Two different scenarios

– Single species of neutral clusters (∼ Hadronic): Sample

ρ(y+, y−) = R(y+ − y−|Y )F (Y )

where (M± = 0)

F (Y ) = Wood-Saxon

R(y|Y ) = C exp (−|y|/λ)
Or

R(y|Y ) = C′ exp
(
−y2/2σ2

)
Explicit charge correlation with const. λ or σ



Models – Cont.
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• Single component model: Du(y) = κdN/dy means∫ y

−∞
dy′

∫ ∞
y

dy′′ f0(y
′, y′′) = κ

∫ ∞
−∞

dy′ f0(y, y′)

Solutions in two extreme cases:

– Indenpendent (no cluster) : f0(y, y′) = g(y)g(y′′)

g(y) =
1

4κ

1

cosh2(y/2κ)
∝

dN

dy

==> Does not correspond to real spectra.

– 2 particle cluster: f0(y, y′) = R(yrel)F (Y ) with yrel = y−y′

and Y = (y + y′)/2

f0(y, y′) =
1

4κ
exp

(
−
|yrel|
2κ

)
F (Y )



Models – Cont.
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• Our model:

Second scenario:

Two species of neutral clus-

ters (∼ Hadronic + QGP):

Sample

ρH(y+, y−)

= RH(y+ − y−|Y )FH(Y )

and

ρQGP (y+, y−)

= RQGP (y+−y−|Y )FQGP (Y )

with λQGP ≈ (1/4)λH

so that
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Single Component Model
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• ρ(y+, y−) = exp(−|y|/λ)F (Y ) is an exact solution of the

Thomas-Chao-Quigg relationship

• ρ(y+, y−) = exp(−y2/2σ2)F (Y ) is an approx. soln.

• Hadronic models ==> constant κ
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Cont.
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HG + QGP – Full η space
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HG – STAR acceptance
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Hadronic models with the single component results



HG + QGP – STAR acceptance
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End point fixed by 〈∆Q2〉/Nch
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05/ 09/ 05 Correlat ions & Fluctuat ions at 
MIT
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Develop m en t  of 2D sym m et r ic 
correla t ion  sh ap e an d  in creased  

am p lit u d e.

centralperipheral

φ
∆ η∆

p- p

Is the medium partonic or hadronic?

Au- Au 130 GeV Like- Unlike Charge 
Dif ference

~ 300k even ts
0 .15  <  p t< 2 

GeV/ c
| η| < 1 .3 , fu ll φ=2π

m ergin g & HBT 
cu t s

ap p lied

Charge difference η, φ correlations:

J. A dam s et a l. (STA R),
n u cl- ex/ 0406035.

STAR pre lim inary
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Lanny Ray, Corr.& Fluct. in RNC 2005



05/ 09/ 05 Correlat ions & Fluctuat ions at 
MIT
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p- p 
200 GeV
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Lanny Ray, Corr.& Fluct. in RNC 2005
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Model Fit: 2
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Lanny Ray, Corr.& Fluct. in RNC 2005



Conclusions
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• Charge transfer: u(y) = (QF (y)−QB(y))/2

• κ(y) ≡ 〈∆u(y)2〉/dNch/dy: A measure of local charge corre-
lation length ==> Captures inhomogeneity

• QGP may be created in a small region around midrapidity.
As collisions become more central

– Large acceptance: κ(y) develops a dip in the middle

– Small acceptance: κ(0) becomes smaller faster than κ(yo)
==> Flattening

• Net baryon transfer fluctuation. Net strange transfer fluctu-
ation

• 〈∆NF
ch(y)∆NB

ch(y)〉


