Charge Transfer Fluctuation as a Signal for QGP

Sangyong Jeon with Lijun Shi & Marcus Bleicher

Physics, McGill

RBRC

Why fluctuations?

- Sometimes physics is in the width.
- Thermodynamically interesting (heat capacity, ...).
- Bulk property : $p_T < 2 \,\mathrm{GeV}$

Aren't Correlation functions better?

• Yes, of course. More fundamental and lots more info. Fluctuations are but a single aspect of them but easier to predict than the whole function.

Interesting fluctuations

- Multiplicity fluctuations (KNO? Thermal?)
- Energy fluctuation (Heat capacity?)
- 'Charge' fluctuation
 - Electric charge (Fractional charges?)
 - Baryon number (Fractional baryon number?)
 - Strangeness (Gluon fragmentation?)
 - Heavy quark number (Initial wave function?)
- Mean p_T/m_T fluctuation (Temperature? Heat capacity?)

(Thomas, Quigg, Chao (1973), Shi, Jeon, hep-ph/0503085)

• Charge Transfer:

$$u(y) = \left[Q_F(y) - Q_B(y)\right]/2$$

where

 $\begin{cases} Q_F(y) = \text{Net charge in the forward region of } y \\ Q_B(y) = \text{Net charge in the backward region of } y \end{cases}$

- $u(y) = [Q_F(y) Q_B(y)]/2$
- Suppose a neutral cluster R decays near y.

 $- R \longrightarrow h^+ + h^-$ with a typical $\Delta y = \lambda$

- For each R decay, u(y) changes by $\pm 1 \Longrightarrow \underline{\mathsf{Random walk}}$

$$- D_u(y) = \langle \Delta u(y)^2 \rangle = N_{\text{steps}}(y) \approx \lambda \frac{dN_{\text{cluster}}}{dy}$$

- Since $dN_{\rm cluster}/dy \propto dN_{\rm Ch}/dy$,

$$\kappa(y) \equiv \frac{D_u(y)}{dN_{ch}/dy} \propto \lambda(y)$$
 Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{\rm Ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

• In elementary particle collisions, $\kappa(y) \approx \text{const}$

PP **@** $p_{max} = 200 \, \text{GeV}$

7

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

• In elementary particle collisions, $\kappa(y) \approx \text{const}$

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{\rm Ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

- In elementary particle collisions, $\kappa(y) \approx \text{const}$
- If QGP has a much smaller λ , its presence should be reflected in $\kappa(y) \Longrightarrow$ Captures *inhomogeneity*.

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{\rm Ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

- In elementary particle collisions, $\kappa(y) \approx \text{const}$
- If QGP has a much smaller λ , its presence should be reflected in $\kappa(y) \Longrightarrow$ Captures *inhomogeneity*.

 $-\kappa_{AA} < \kappa_{PP}$

 $\kappa(y) \equiv \frac{D_u(y)}{dN_{ch}/dy} \propto \lambda(y)$ Constant $\kappa(y)$: Thomas-Chao-Quigg Relationship

• Measure of the *local* charge correlation length

[Net charge fluct. and Balance func : Averaged inside the obs. window]

- In elementary particle collisions, $\kappa(y) \approx \text{const}$
- If QGP has a much smaller λ , its presence should be reflected in $\kappa(y) \Longrightarrow$ Captures *inhomogeneity*.
 - $-\kappa_{AA} < \kappa_{PP}$
 - $-\kappa_{AA}(y)$: Significantly different from constant if QGP is made only locally

Hadron Gas + QGP $p \lambda_{QGP} + q \lambda_{HG} < \lambda_{HG}$

Extent of QGP?

- Comparing d-Au and Au-Au $dN/d\eta$ (Vertical scaling + small shifting (1 or 2 exp. bins))
- Same shapes outside the 'plateau'! (Jeon, Bleicher, Topor Pop, Phys.Rev.C69:044904,2004, nucl-th/0309077)

How small is $\lambda_{QGP}/\lambda_{HG}$?

• $\langle \Delta Q^2 \rangle_{\text{QGP}} / \langle N_{\text{ch}} \rangle \approx (1/3) \langle \Delta Q^2 \rangle_{\text{HG}} / \langle N_{\text{ch}} \rangle$

(Fractional charges + gluons)

• If neutral clusters, this implies $\lambda_{QGP} \approx (1/3)\lambda_{HG}$

Modeling

"Correlation function has all the information."

True. Any charge fluctuation observable measures a particular aspect of

$$C_Q(y,y') = C_{++}(y,y') + C_{++}(y,y') - 2C_{+-}(y,y')$$

where

$$C_{ab}(y,y') = \frac{dN_{ab}}{dydy'} - \frac{dN_a}{dy}\frac{dN_b}{dy'}$$

- Different fluctuations emphasize different aspects of correlation.
- Fluctuations allow physical interpretation of the features through model studies.

Correlations

- Relevant to fluctuations: Single particle distributions and 2particle correlation functions.
- Single particle distribution functions : $\rho_{\alpha}(p)dp = \text{Average number of } \alpha \text{ within } dp \text{ around } p.$

$$\int_{\Delta\eta} dp \,\rho_{\alpha}(p) = \langle N_{\alpha} \rangle_{\Delta\eta} \tag{1}$$

• 2-particle correlation functions :

 $\rho_{\alpha\beta}(p_1, p_2) dp_1 dp_2 = \text{Average number of } \alpha\beta \text{ pairs within } dp_1 dp_2$ around p_1, p_2

$$\int_{\Delta\eta} dp_1 dp_2 \,\rho_{\alpha\beta}(p_1, p_2) = \langle N_\alpha N_\beta \rangle_{\Delta\eta} - \delta_{\alpha\beta} \langle N_\alpha \rangle_{\Delta\eta} \tag{2}$$

A toy model – " ρ " gas

- M_{\pm} independently emitted \pm particles " ρ^{\pm} " $\implies g_{\pm}(p_{\pm})$
- M_0 neutral clusters " ρ^{0} " $\implies f_0(p_+, p_-), g_0(p) = \int dq f_0(p, q)$

- Single particle distributions

$$\rho_{\pm}(p) = \langle M + \rangle g_{\pm}(p) + \langle M_0 \rangle g_0(p) \tag{3}$$

- Two particle correlation functions

$$C_{++}(p_1, p_2) \equiv \rho_{++}(p_1, p_2) - \rho_{+}(p_1)\rho_{+}(p_2)$$

=
$$\sum_{a=+,0} \sum_{b=+,0} \langle \delta M_a \delta M_b \rangle g_a(p_1)g_b(p_2)$$

-
$$\langle M_+ \rangle g_+(p_1)g_+(p_2) - \langle M_0 \rangle g_0(p_1)g_0(p_2)$$

$$C_{+-}(p_1, p_2) = \sum_{a=+,0} \sum_{b=-,0} \langle \delta M_a \delta M_b \rangle g_a(p_1) g_b(p_2) + \langle M_0 \rangle [f_0(p_1, p_2) - g_0(p_1) g_0(p_2)]$$
(4)

If Poisson-like, all terms in $C_{\alpha\beta}$ are O(M). In $\rho_{\alpha\beta}$, the leading term is $O(M^2) \Longrightarrow f_0$ is hidden.

QGP vs. Hadron gas

- Color fluctuation: Hadrons are all color neutral =>> Difficult to observe color fluctuation
- Charge fluctuation: Quarks have fractional charges —> Less charge fluctuation per charged degree of freedom

Final hadron spectrum : Neutral rich

A Simple Neutral Cluster Model

[Similar to the old ρ, ω model and Bialas et.al.'s Acta Phys. Polon. B6, 39, 1975 model]

• Make up an event with $M_0 + M_+$ positive particles and $M_0 + M_-$ negative particles by sampling

 $\rho(y_+, y_-) = R(y_+, y_-|Y)F(Y)$

 M_0 times for (+-) pairs and by sampling

 $g(y) \approx F(y)$

 M_{\pm} times for un-paired charged particles.

F(Y): Cluster rapidity distribution, $Y = (y_+ + y_-)/2$.

 $R(y_+, y_-|Y)$: Rapidity distribution of the daughters given Y.

Models

- Different choices of R and $F \implies$ Different Models
- For instance, Bialas et.al.'s model is equivalent to sampling

$$\rho_{75}(y_+, y_-) = f(y_+|Y)f(y_-|Y)F(Y)$$

Correlation provided by integration over Y.

- Our model: Two different scenarios
 - Single species of neutral clusters (\sim Hadronic): Sample

$$\rho(y_+, y_-) = R(y_+ - y_- | Y) F(Y)$$

where $(M_{\pm} = 0)$

F(Y) = Wood-Saxon $R(y|Y) = C \exp(-|y|/\lambda)$ Or $R(y|Y) = C' \exp(-y^2/2\sigma^2)$

Explicit charge correlation with const. λ or σ

Models – Cont.

• Single component model: $D_u(y) = \kappa dN/dy$ means

$$\int_{-\infty}^{y} dy' \int_{y}^{\infty} dy'' f_0(y', y'') = \kappa \int_{-\infty}^{\infty} dy' f_0(y, y')$$

Solutions in two extreme cases:

- Independent (no cluster) : $f_0(y, y') = g(y)g(y'')$

$$g(y) = \frac{1}{4\kappa} \frac{1}{\cosh^2(y/2\kappa)} \propto \frac{dN}{dy}$$

 \implies Does not correspond to real spectra.

- 2 particle cluster: $f_0(y, y') = R(y_{rel})F(Y)$ with $y_{rel} = y - y'$ and Y = (y + y')/2

$$f_0(y, y') = \frac{1}{4\kappa} \exp\left(-\frac{|y_{\mathsf{rel}}|}{2\kappa}\right) F(Y)$$

Models – Cont.

• Our model: Second scenario: Two species of neutral clusters (\sim Hadronic + QGP): Sample $\rho_H(y_+, y_-)$ $= R_H(y_+ - y_-|Y)F_H(Y)$ and $\rho_{QGP}(y_+, y_-)$ $= R_{QGP}(y_+ - y_-|Y)F_{QGP}(Y)$ with $\lambda_{QGP} \approx (1/4) \lambda_H$

so that $\lambda_{QGP} \approx (1/2)$

Single Component Model

- $\rho(y_+, y_-) = \exp(-|y|/\lambda) F(Y)$ is an exact solution of the Thomas-Chao-Quigg relationship
- $\rho(y_+, y_-) = \exp(-y^2/2\sigma^2) F(Y)$ is an approx. soln.
- Hadronic models \implies constant κ

Cont.

UrQMD, Central 6%

RQMD, Central, Semi-Peripheral

HG + **QGP** - **Full** η space

HG – STAR acceptance

Hadronic models with the single component results

HG + QGP - STAR acceptance

End point fixed by $\langle \Delta Q^2 \rangle / N_{\rm ch}$

Charge difference $\underline{\eta}, \underline{\phi}$ **correlations**:

...and approaches a 2D hadronization geometry, *i.e.* symmetric widths on
 ϕ_{Δ} ,
with exponential attenuation suggesting an opaque medium.05/09/05Correlations & Fluctuations at
MIT20
28

Conclusions

• Charge transfer: $u(y) = (Q_F(y) - Q_B(y))/2$

- $\kappa(y) \equiv \langle \Delta u(y)^2 \rangle / dN_{ch}/dy$: A measure of *local* charge correlation length \implies Captures *inhomogeneity*
- QGP may be created in a small region around midrapidity. As collisions become more central
 - Large acceptance: $\kappa(y)$ develops a dip in the middle
 - Small acceptance: $\kappa(0)$ becomes smaller faster than $\kappa(y_0)$ Flattening
- Net baryon transfer fluctuation. Net strange transfer fluctuation
- $\langle \Delta N_{\mathsf{ch}}^F(y) \Delta N_{\mathsf{ch}}^B(y) \rangle$