SPS Results Review

In-Kwon YOO (voo@pusan.ac.kr) Pusan National University Busan, Republic of KOREA

Experiments @ SPS.CERN

Dileptons @ SPS/RHIC

0

2

3

M (GeV)

ϕ meson yields

9

Event-by-event mean p_T fluctuations at 158 AGeV/c

Talk of H. Sako in parallel session on Friday afternoon

- Centrality dependence of fluctuations in new analysis of minimum bias data
- non-monotonic dependence and enhancement over p+p extrapolation in semi-central events observed

Event-by-event net-charge fluctuations at 40, 80, and 158 AGeV/c

Talk of H. Sako in parallel session on Friday afternoon

Centrality and collision energy dependence

- smaller fluctuations than charge conservation limit
- decrease in centrality and collision energy observed

NA57 / WA97 @ SPS.CERN

Transverse mass spectra in Pb-Pb at 160 A GeV

Transverse mass spectra in Pb-Pb at 160 A GeV

m_T spectra in Pb-Pb at 160 A GeV/c Hydro-dynamical picture: the m_T spectra are sensitive to the transverse flow

Blast wave description of the spectra: $\frac{d^2 N_j}{m_T dy dm_T} = \int_0^{R_G} A_j m_T \cdot K_1 \left(\frac{m_t \cosh \rho}{T}\right) \cdot I_0 \left(\frac{p_t \sinh \rho}{T}\right) r dr$ $\rho(r) = \tanh^{-1} \beta_{\perp}(r)$

Uniform particle density

$$\beta_{\perp}(r) = \beta_{S} \left[\frac{r}{R_{G}} \right]^{n} \quad r \leq R_{G}$$

$$<\beta_{\perp}>=\frac{2}{2+n}\beta_{s}$$

15

Ref: E Schnedermann, J Sollfrank and U Heinz, Phys. Rev. C48 (1993) 2462 In-Kwon YOO HIM @ SKKU Jun. 2005

Blast wave fit to strange particles

• T and $<\beta_{\perp}>$ depend weakly on **n**

• **n**=2 case disfavoured by data (bad χ^2) In-Kwon YOO HIM @ SKKU Jun. 2005

Freeze-out parameters: multi- vs. singly strange particles

- Fit driven by singly strange particles
- Ξ and Ω fit well with same parameters HIM @ SKKU Jun. 2005

Blast fit for most central collisions

	n	T (MeV)	$<\beta_{\perp}>$	χ^2/ndf
NA57	1	118±13	0.45± 0.02	53/43
NA49 (a)	0	127±1	0.48± 0.01	120/4 3
NA49 (b)	0	114±2	0.50± 0.01	91/41

(a) K^+ , p, Λ , Ξ^- , Ω^- (b) K^- , \overline{p} , ϕ , $\overline{\Lambda}$, $\overline{\Xi}^+$, $\overline{\Omega}^+$

NA49 centrality: 5% for K^{\pm} , ϕ 10% for p, Λ , Ξ ; 20% for Ω

 Ref: M van Leeuwen, Nucl. Phys. A715 (2003) 161c

 HIM @ SKKU Jun. 2005
 18

Centrality dependence of the thermal freeze-out in Pb-Pb at 160 A GeV

- With increasing centrality:
 - Transverse flow velocity increases
 - Freeze-out temperature decreases
- Earlier decoupling for
- peripheral collisions ?

Enhancements at 40 A GeV/c

• Enhancements are still there at 40 GeV, with the same hierarchy as at 160 GeV: $E(\Lambda) < E(\Xi)$

Hyperon enhancements: 40 vs. 160 GeV

In most central collisions (bins 3-4): enhancements at 40 are higher than at 160 GeV
Enhancements increase more steeply at 40 than at 160 GeV

m_T Spectra $[d^2N/(m_T dydm_T) \sim exp(m_T/T)]$

23

Slope vs. Energy

The Step at $E_{lab} = 20 - 30 \text{ AGeV}!$

24

Multiplicity vs. Energy

Onset, Horn at $E_{lab} = 20-30 \text{ AGeV}$

25

Motivation

Experiment

Results

Outlook

Statistical Model of the Early Stage (SMES) :

M. Gorenstein, Acta Phys. Polon. B30 (1999) 2705

HIM @ SKKU Jun. 2005

The Statistical Model of the Early Stage (SMS)

Results

Experiment

M.Gorenstein, Acta Phys. Polon. B30 (1999) 2705

Outlook

Motivation

Strangeness Enhancement :

J. Rafelski, Phys. Rep. 88, 331 (1982)

Strange Horn :

M.Gazdzicki, D.Roehrich, Z.Phys. C71 (1996) 55

M.Gorenstein, Acta Phys. Polon. B30, 2705

HIM Outline (Suggestion)

subjectwise theoretical & experimental Review (AGS-SPS-RHIC)

- Hadron -
- Lepton -
- Correlations (HBT, BF etc.)-
- E-by-E -
- Jet –
- Any other subject ?

to be answered Where to go !

- Which system / variables to be investigated ?
- QGP is found ? Or not ? And then ?