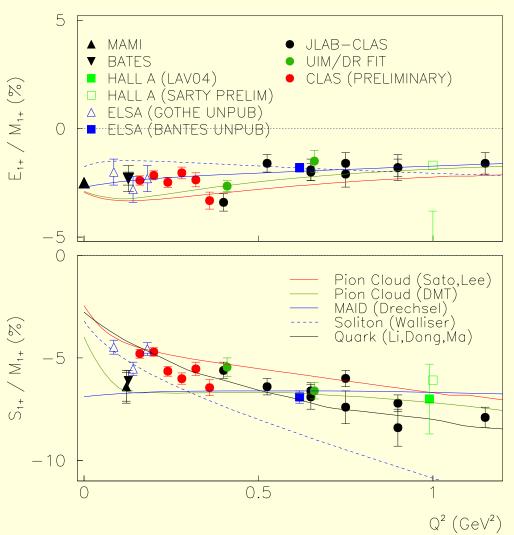
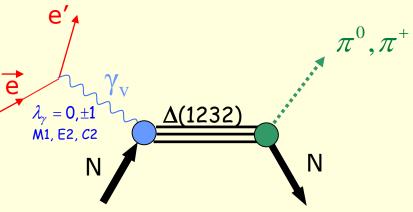


Recent results from Jefferson Lab

1. Strange quarks in Nucleon: Happex


Strange quark contribution to the proton

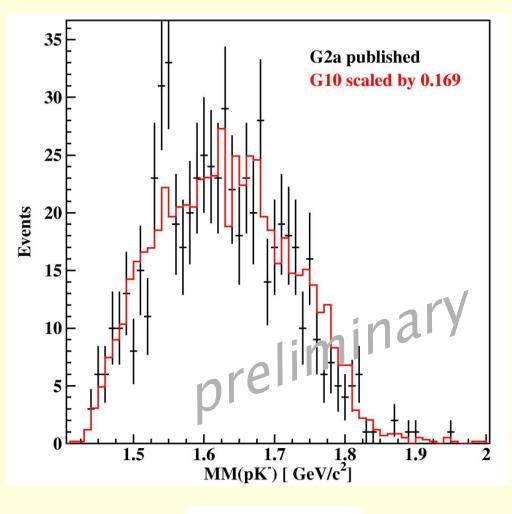


http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005

2. $N-\Delta$ transition form factors

Preliminary E1+/M1+ is in good agreement with MAID, while S1+/M1+ continues to show strong Q2 dependence.

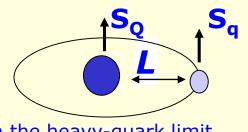

Consistency between different data sets at low Q² needs to be understood. Reanalysis of ELSA low Q2 points in progress.

3. Latest on Pentaquarks

A comprehensive program to search for pentaquarks in photoproduction experiments at Jeffeson Lab were approved in 2003-2004 with the goal of confirming previous results and explore new kinematics with at least a factor 10 increase in statistics.

Relevant Publication

g10	deuteron $E_{\gamma} \sim 1.0-3.5 \text{ GeV}$ data taking completed in 2004	CLAS(d) g2 2003 Phys. Rev. Lett. 91, 252001-1
g11	proton $E_{\gamma} \sim 1.6-3.8 \text{ GeV}$ data taking completed in 2004	SAPHIR 2003 Phys. Lett. B572, 127
eg3	deuteron $E_{\gamma} \sim 4.0-5.4 \text{ GeV}$ data taking completed in 2005	NA49 2004 Phys. Rev. Lett. 92, 042003-1
Super-g	proton $E_{\gamma} \sim 3.8 - 5.7 \text{ GeV}$ planned for 2006	CLAS(p) g6 2004 Phys. Rev. Lett. 92, 032001-1

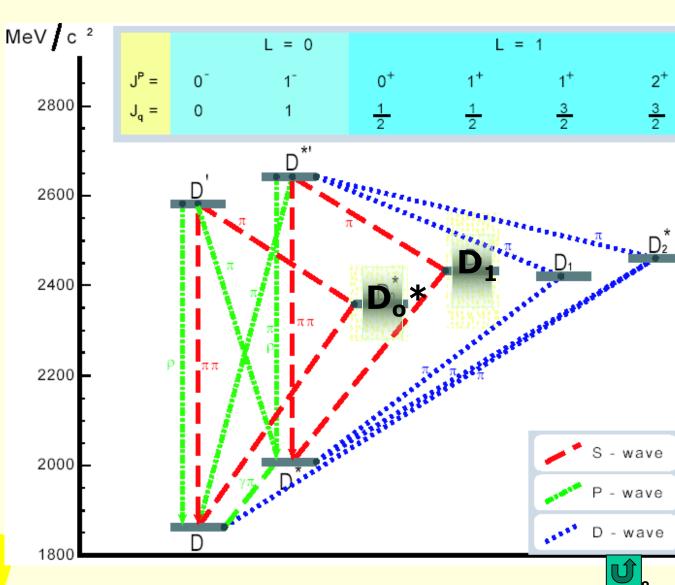


M(nK+)(GeV)

- Model-independent uppper limit 95% CL for Θ^+ is < 20nb.
- With assumptions about the spectator, we can set a model-dependent upper limit to the cross section of < 4-5 nb.

Charmed mesons spectroscopy chart

In the heavy-quark limit, the heavy-quark spin $\mathbf{S}_{\mathbf{Q}}$ and the total angular momentum of the light-quark $\mathbf{j}_{\mathbf{q}} = \mathbf{L} + \mathbf{S}$ are conserved


PREDICTION #1:

Each level is composed of a degenerate doublet of states with the same j_q and total angular momentum $J=j_q\pm 1/2$. $j_q=1/2$ states are predicted to be broad (100-200MeV width).

PREDICTION #2:

FLAVOUR SYMMETRY

Searches and measurements at

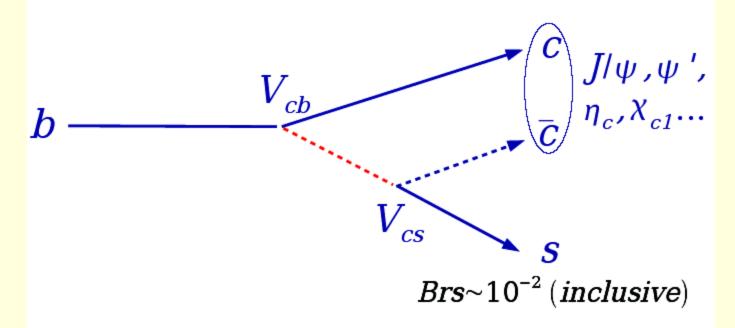

- 1. L=1 states at Focus (photoproduction at Tevatron) and Belle(B decay) and CDF
- 2. D_s states at BABAR and Belle

Table 1: Summer 2005 status of (L=1, n=1) $c\bar{s}$ mesons (MeV). Statistical and systematical errors added in quadrature, unless noted.

j_q	1/2	1/2	3/2	3/2	1/2	1/2				
$ \begin{vmatrix} j_q \\ J^P \end{vmatrix} = 0^{+} $		1 ⁺	1+	2+	0-	1-				
L, n	1, 1	1, 1	1, 1		0, 2	0, 2				
	$D_{sJ}^*(2317)$	$D_{sJ}(2460)$	$D_{s1}(2536)$	$D_{s2}^*(2573)$	D_s'	$D_s^{*\prime}$				
Decay Mode	$D_{S}^{+}\pi^{0}$	$D_S^+ \gamma, D_S^{*+} \pi^0, D_S^+ \pi^+ \pi^-$	$D^*K, D\pi K$	DK						
Mass (MeV)										
PDG ±	2317 ± 0.6	2458.9 ± 0.9	2535.35 ± 0.6	2573.5 ± 1.7						
FOCUS prel. \pm	2323 ± 2		2535.1 ± 0.3	2567.3 ± 1.4						
$BR(D\pi K)/BR(D^*K)$										
BELLE prel. \pm		3. (1960.20)	$2.8 \pm 0.2 \pm 0.4\%$							
Width (MeV)										
PDG ±	<4.6	< 5.5	<2.3 90 % cl	15 ± 5						
FOCUS ±			1.6 ± 1.0	28 ± 5						

Hadronic Physics at Belle

 $b \rightarrow c \bar{c} s$ is a dominant process

B mesons are a good source for charm, charmonium and other $c\bar{c}$ states

New Particles found by Belle X(3872)

J^{PC} established as 1⁺⁺ $c\bar{c}$ charmonium component is small (< few%) properties consistent with a $D^0 \bar{D}^{*0}$ bound state

4-quark mesons : S.Ishida, Y(3940) M.Ishida, A.Polosa, J.Vijande

No obvious cc assignment 4-quark state seems unlikely $c\bar{c}$ -qluon hybrid?

X(3940)

new charmonium in $e^+e^- \rightarrow J/\psi(c\bar{c}):\eta_c(3S)$??

Z(3930)

 χ'_{c2} candidate in $\gamma \gamma \rightarrow D\bar{D}$ production

 $\Sigma_c(2800)$

 Σ_{c2} , $J^P = 3/2^-$ isospin triplet

Hadronic Physics at BES

Summary

- Lots of progress in hadron spectroscopy study from BES and CLEOc in charmonia decay.
- X(1835) observed in J/ψ→γ+(η'ππ) decays, could be the same state observed in J/ψ→γppbar, could be a baryonium. Need more information (J^{PC} etc.).
- Scalars are studied in J/ψ , ψ' and χ_{c0} decay. Parameters of σ and κ are given, other states are also measured in hadronic and radiative decays.
- Vector charmonia (J/ψ, ψ', and ψ") hadronic decays are studied extensively and simultaneously to understand charmonium decay dynamics.
- μ " $\rho\pi$ puzzle" remains a puzzle, μ " charmless decays is observed and could be large.
- More data are needed (and expected) for further study (CLEOc and BESIII).

Recent results on Baryon Spectroscopy

- New Charm Baryon Masses this year
 - Λ⁺_c Updated since 1991
 - Discovery of Isotriplet decaying to $\Lambda_c^+\pi$
 - Ξ_c^+ Updated since 1998
 - Ξ_c^0 Updated since 1998
- Update and Confirmation of Ξ_{cc}^+ -first report in 2002
- New Λ_b^0 Mass updated since 1997
- Pentaquarks -what's their status?
- Summary

Babar, Belle

Selex

Summary of charm pentaquark results

Experiment	$Y(\Theta_c)$	$Y(D^{*-})$	$Y(D^-)$	$\frac{\sigma(\Theta_c \rightarrow D^{*-})}{\sigma(D^{*-})}$	$rac{\sigma(\Theta_c ightarrow D^-)}{\sigma(D^-)}$
H1 ep	50.6 ± 11.2	~ 3500		$\sim 1~\%$	
FOCUS γN ALEPH e^+e^- CDF $p\overline{p}$ ZEUS ep	< 15 < 27			< 0.04 % < 0.31 % < 0.23 %	< 0.04 % < 1.80 %

- FOCUS result is in serious disagreement with H1 observation for $\Theta_c \rightarrow D^{(*)-}p$
- **ZEUS** has identical production and similar experiment; claims H1 signal excluded at 9σ

Summary

- 1. Bound heavy pentaquark, unbound strange heavy pentaquarkCDF
- 2. Pentaquark search: forward direction
- 3. D states
- 4. Charomium states
- 5. Charmed baryon state