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Part I

Very short Introduction



Why correlations and fluctuations?
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• Looking only at the averages can deceive you.

∗ (Ex.) Micro-canonical, Canonical, Grand-canonical

E, 〈E〉 can be all the same, but fluctuations are not.

• To study a blackbox – Shake and listen.

∗ Disturb the system with a known force and observe

the response

∗ Response function: θ(t− t′)
〈
[ρ(x), ρ(x′)]

〉



Why corr. and fluct.? – Cont.
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• First order phase transition: Entropy, Volume, Enthalpy becomes

discontinuous – Finite latent heat

• Second order phase transition: S, V, H changes smoothly – No

latent heat – but their derivative becomes discontinuous

∗ In Stat-Mech: Derivative of an average =⇒Susceptibility

=⇒Fluctuation

(Ex.) χM =
1

V

∂M

∂H
∝
〈
M2

〉
− 〈M〉2

• Second order phase transition: Long range fluctuations. =⇒All

wavelengths are excited

• Can also use Quantum correlations – HBT



In heavy ion collisions ...

5

• A lot of the ‘QGP signals’ and ‘QGP puzzles’ involve
correlations/fluctuations one way or another

∗ HBT : 2-Point momentum correlation function

∗ Elliptic flow (v2) : Conditional probability. (Recall:
P (a|b) = P (a, b)/P (b).) Given the reaction plane, what is the
excess ...

∗ Jet quenching : Conditional probability. Given we see a near
side jet ...

∗ pT fluctuations

∗ Multiplicity fluctuations

∗ Net charge fluctuations

∗ Many more ...



Motivation
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And this happens with local thermal equilibrium maintained. (That’s
the assumption anyway.)



Basic Assumptions
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• 1 Collision event = 1 member of an statistical ensemble.

• Doesn’t have to be an equilibrium ensemble.

• Averages:

〈O〉 = Trρ̂O ↔
1

Nevents

Nevents∑
i=1

Oi

• Correlations:

〈OxOy〉 = Trρ̂OxOy ↔
1

Nevents

Nevents∑
i=1

Oi
xOi

y

• Fluctuations: 〈
∆O2

〉
=
〈
O2

〉
− 〈O〉2



Hope to see (but we won’t)
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Part II

Charge Independent

Correlations and Fluctuations



Multiplicity Fluctuations
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• Simplest test of thermalization

〈N〉 = gV
∫

d3p

(2π)3
n(Ep)

〈
∆N2

〉
= gV

∫
d3p

(2π)3
n(Ep)[1± n(Ep)] ∼ 〈N〉

• In p̄p between 10GeV <
√

s < 546GeV, UA1 and UA5 found,

E
dσ

d3p
=

{
A exp(−bmT ) Low pT : Bulk. Looks thermal.
B(1 + p0/pT )−n High pT

But 〈
∆N2

〉
= 〈N〉 (1 + 〈N〉 /k) ∼ 〈N〉2

with k ∼ 3− 4 and 〈N〉 ∼ 20− 30

No multiple re-scatterings =⇒No real thermalization



STAR Data from QM01
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J.G.Reid, “STAR Event-by-event Fluctuations”.

For
√

sNN = 130GeV,

•
〈
∆N2

ch

〉
= 2.09 〈Nch〉 = 〈Nch〉+ σ2

V + σ2
R

• With σ2
V = 0.83 〈Nch〉 and σ2

R = 0.25 〈Nch〉〈
∆N2

ch

〉
corr.

≈ 〈Nch〉

• Food for thoughts only. This analysis is still ‘preliminary’.



DATA from NA49
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Marek Gazdzicki, Correlations and Fluctuations 2005

25

The scaled variance ... 

Note that the previously shown results for C+C and
Si+Si collisions were incorrect, the reanalysis is in progress

The scaled variance is
corrected for the 

resolution of ZDC and
the final width of the

E
ZDC 

interval



DATA from NA49
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Marek Gazdzicki, Correlations and Fluctuations 2005

27

The scaled variance in p+p interactions

The scaled variance
increases with collision

energy

The extrapolated NA49
results agree with 
the old p+p data

AGS SPS        RHIC

Again, food

for thoughts

only. No

conclusion

can be drawn.



Mean pT Fluctuations
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• Motivation: π − σ

σ

π π

G  /m2 2
σ

k p

Diagram that contribute to the pion 〈∆nk ∆np〉 correlator.

• At the critical point mσ → 0

• If chiral symmetry is not explicitly broken G → 0

• Chiral symmetry is explicitly broken by mq 6= 0 =⇒G doesn’t have
to vanish =⇒Pion pT fluctuations can be large.



Phenix Data
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• Excess seen. But can be explained by correlations among high pT
(jet) particles (with energy loss).



Hanbury-Brown-Twiss
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x

y
p

A(x,p)
x

A(x,p)

p

Signal from a distributed source:

Ψp(y) =
∑
x

A(x,p)eiφx eip·(x−y)

Squaring and using
〈
ei(φx−φz)

〉
= δx,z,

P (p) =
∑
x

A(x,p)2 =
∫

dx ρ(x)A(x,p)2



HBT
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x

z

p

p

1

2

y

y1

2

Detector 1 got p1 and detector 2 got p2.

Total amplitude have p1 at y1 and p2 at y2:

Ψ(y1,p1;y2,p2) =
1

2

∑
x,z

(
A(x,p1)e

ip1·(x−y1)eφxA(z,p2)e
ip2·(z−y2)eφz

+ A(z,p1)e
ip1·(z−y1)eφzA(x,p2)e

ip2·(x−y2)eφx

)



HBT
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• Squaring and using
〈
ei(φx−φz)

〉
= δx,z,

C(p1,p2) =
P (p1,p2)

P (p1)P (p2)
= 1 +

∣∣∣∣∫ dx ρeff(x)ei(p1−p2)·x
∣∣∣∣2

with ρeff(x) = ρ(x)
A(x,p1)A(x,p2)√

P (p1)P (p2)

• Assume plane waves and

ρeff(x) = N e−x2/R2−t2/∆τ2

With q = p1 − p2 and q0 = E1 − E2, this yields

C(p1,p2) = 1 + e−q2R2/2−q20∆τ2/2
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• Now note: q20 = (E1 − E2)
2 = |(p1 − p2) · (p1 + p2)/(E1 + E2)|2

Define qout = (q · β̂)β̂

β̂ : the unit vector in the p1 + p2 direction
Get

C(p1,p2) = 1 + exp
(
−q2outR

2
out/2− q2sideR

2
side/2− q2longR2

long/2
)

with
R2

out = R2 + β2
T∆τ2

qlong||beam, qout ⊥ qside and qout ⊥ qlong

• Must have

Rside < Rout



The HBT Puzzle
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• Rside ≈ Rout !!!

• Conventional interpretation is

out.

• What is the source shape?

• Static vs. Evolving system?

• Puzzle remains.



Jet Correlations
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Near−side
jet

Away−side
jet

Hard
scattering

Gyulassy, Levai, Vitev (GLV), X.-N. Wang, Baier, Dokshitzer, Mueller,

Peigne, Schiff (BDMPS), Zakharov, Wiedemann, Kovner, Turbide, Gale,

Jeon, Moore, ...



Jet quenching – Theory
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Diagrams to sum:

. . .

t1 t2 t3 tN

s1
s2

sM

p

k

p   k

. . . .

T =

Need to sum over M and N and then square to get the radiation rate:

Landau-Pomeranchuck-Migdal effect



SD Equation for Gluon Radiation
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Must take care of:

• Gluon momentum k can change now.

• Color factors.

• Must keep track of quarks and gluons.

2h = iδE(h, p, k)F(h) + g2
∫

d2q⊥
(2π)2

C(q⊥)×

×
{
(Cs − CA/2)[F(h)− F(h−k q⊥)]

+(CA/2)[F(h)− F(h+pq⊥)]

+(CA/2)[F(h)− F(h−(p−k)q⊥)]
}
,

δE(h, p, k) =
h2

2pk(p−k)
+

m2
k

2k
+

m2
p−k

2(p−k)
−

m2
p

2p
.



Gluon Radiation Rate
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dΓg(p, k)

dkdt
=

Csg2
s

16πp7

1

1± e−k/T

1

1± e−(p−k)/T
×

×



1+(1−x)2

x3(1−x)2
q → qg

Nf
x2+(1−x)2

x2(1−x)2
g → qq

1+x4+(1−x)4

x3(1−x)3
g → gg


×
∫

d2h

(2π)2
2h ·Re F(h, p, k) ,

where x ≡ k/p is the momentum fraction in the gluon (or either quark,
for the case g → qq).

h ≡ p× k: 2-D vector. O(gT2)



Time evolution equation
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dPqq̄(p)

dt
=
∫
k
Pqq̄(p+k)

dΓq
qg(p+k, k)

dkdt
− Pqq̄(p)

dΓq
qg(p, k)

dkdt

+2Pg(p+k)
dΓg

qq̄(p+k, k)

dkdt
,

dPg(p)

dt
=
∫
k
Pqq̄(p+k)

dΓq
qg(p+k, p)

dpdt
+Pg(p+k)

dΓg
gg(p+k, k)

dkdt

−Pg(p)

dΓg
qq̄(p, k)

dkdt
+

dΓg
gg(p, k)

dkdt
Θ(2k−p)

 ,

• k integrals range: (−∞,∞).

• k < 0: Absorption of thermal gluons.

• k > p: annihilation against and antiquark of energy (k − p).

• Θ(2k − p): To prevent double counting of final states.



Data & Theory
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Turbide, Gale, Jeon and Moore,

Phys.Rev.C72:014906,2005
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Data – Disappearance of Awayside
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Part III

Charge Dependent

Correlations and Fluctuations



Net Charge Fluctuations
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• Motivations [Jeon & Koch + Asakawa, Heinz & Muller]

∗ Quarks carry fractional charges

∗ Gluons are abundant

∗ In QGP (with appropriate degeneracy factors (12+12+16))〈
∆Q2

〉
= (9/4)

〈
∆N2

u

〉
+ (9/1)

〈
∆N2

d

〉
and invoking ‘parton-hadron duality’

〈Nch〉 = (2/3)(〈Nu〉+ 〈Nd〉+ 〈Ng〉)

we get (and Lattice confirms it)〈
∆Q2

〉
〈Nch〉

≈ 1/4− 1/3



STAR Data
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• Usually given in terms of the ‘ν-Dynamic’

Define

ν+− =

〈 N+〈
N+

〉 − N−
〈N−〉

2〉
=

〈∆N+〈
N+

〉 − ∆N−
〈N−〉

2〉

and

ν+−,dyn = ν+− −
1〈

N+

〉 − 1〈
N−

〉 =
4

〈Nch〉


〈
∆Q2

〉
〈Nch〉

− 1



• Data

∗ 〈Nch〉 ν+−,dyn ≈ −1−−1.4

or

〈
∆Q2

〉
〈Nch〉

≈ 0.75− 0.65 =⇒Consistent with hadronic gas



DATA from NA49
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Marek Gazdzicki, Correlations and Fluctuations 2005

13

... and the experimental data

central Pb+Pb collisions

global charge conservation

 n
e
t-

c
h

a
rg

e
fl

u
c
tu

a
ti

o
n

s

-0.5
QGP fluctuations

A predicted large suppression of the net-charge
fluctuations is not observed!

NA49, Phys.Rev.C70:064903,2004



Why not?
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• Rescatterings in the hadronic phase can be fatal

• QGP content may be small and local.

Averaging over can hide it.

Need a more local measure.



Balance Functions
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[Pratt, Bass, Danielewicz]

• Definition: Within the given phase space,

B(∆y) =
1

2

N+−(∆y)−N++(∆y)〈
N+

〉 +
N−+(∆y)−N−−(∆y)

〈N−〉


where Nij(∆y) = Number of ij-pairs with ∆y difference

(in rapidity, qinv, ...)

• In terms of 2 particle correlation functions

Nij(∆y) =
∫
Y

dy1

∫
Y

dy2 ρij(y1, y2)δ(∆y − |y1 − y2|)

where the subscript Y implies |yi| < Y .

Normalization:∫
Y

dy1

∫
Y

dy2 ρij(y1, y2) =
〈
NiNj

〉
Y
− 〈Ni〉Y δij



Balance Func. – Cont.
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• (My) Interpretation using a neutral cluster model

Assume all charged particles come from neutral clusters.

PNC
({y+

i , y−i }) =
NC∏
i=1

f(y+
i , y−i )

with f(x, y) = N exp(−|x− y|/γ)F ((x + y)/2)
[Thomas, Chao, Quigg]

If only a single species of clusters,

B(∆y) ∝ e−|∆y|/γ1

• If a second QGP component develops,

B(∆y) ∝ pfullp∆e−|∆y|/γHG + (1− pfull)(1− p∆)e−|∆y|/γQGP

with γHG > γQGP.

=⇒More central collisions should have smaller width.



Data
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• Reductions seen.

• Still averaging over too much.

• How to estimate fractions and γHG/γQGP?



Charge Transfer Fluctuations
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Idea:

λ HG
p λ +q λQGP HG

λ HG

λ HG

λ HG

<
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• Observable:

∗ Define: u(y) = [QF (y)−QB(y)]/2

• Suppose a neutral cluster R decays near y.

∗ R −→ h+ + h− with a typical ∆y = λ

∗ For each R decay, u(y) changes by ±1 =⇒Random walk

∗ Du(y) =
〈
∆u(y)2

〉
= Nsteps(y) ≈ λ

dNcluster

dy

∗ Since dNcluster/dy ∝ dNch/dy, κ(y) ≡
Du(y)

dNch/dy
∝ λ(y)



Interpretations
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• Neutral cluster models

Assume

PNC
({y+

i , y−i }) =
NC∏
i=1

f(y+
i , y−i )

Then,

Du(y) =

〈
∆Q2

〉
4

+ 2 〈NC〉
∫ y

yo

dy−
∫ y0

y
dy+ f(y+, y−)

with yr ≡ y − y′, Y = (y + y′)/2

f(y, y′) = (1− p) exp(−|yr|/γHG)FHG(Y )

+ p exp(−|yr|/γQGP)FQGP(Y )

where γHG > γQGP

p: Overall QGP fraction.



HG – STAR acceptance
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Hadronic models with the single component results



Predictions [Jeon, Shi]
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Totally uncorrelated

• Hadronic models have no centrality dependence

• Predict
∗ QGP width ≈ 1.4
∗ QGP content ≈ 20%
∗ QGP correlation length = 0.3− 0.6



A lot more data available
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Followings copied from presentation by

L.Ray, and C.Roland in Correlations and fluctuations workshop, 2005,

MIT.



10/ 31/ 05 Correlat ions & Fluctuat ions at 
MIT
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STAR  Preliminary
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L. Ray



05/ 09/ 05 Correlat ions & Fluctuat ions at 
MIT
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2D hadronizat ion

Gaussian to exponential  opaque medium

STAR pre lim inary

0.15 <  p t< 2 
GeV/ c

| η| < 1 .0 , fu ll φ=2π
m ergin g & HBT 

cu t s
ap p lied

η, φ charge dif ference correlat ions for 62 GeV Au-

Au

Peripheral

Centra
l

43

L. Ray



Christof Roland /  MITCorrelat ions 05 April 2005

What about RHIC

STAR: Supriya Das, ICPAQGP2005, Kolkata INDIA

NA49/ STAR  
Preliminary
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Perspectives instead of conclusions
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There is no doubt that we have an elephant.



Perspectives instead of conclusions
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There is no doubt that we have an elephant.

But is it a Wall, Spear, Snake, Tree, Fan or Rope?



Perspectives instead of conclusions

45

There is no doubt that we have an elephant.

But is it a Wall, Spear, Snake, Tree, Fan or Rope?

We need a wide, comprehensive perspective! =⇒Need correlations!



What needs to be done

46

• A lot.

• Get as much as we can from perturbative QCD – Thermal QCD,
CGC, ...

• Coordinated and concerted Lattice Effort – Viscosities, Spectral
functions, Susceptibilities that are relevant to the experiment [This
is HARD.]

• Need a good formulation of non-equilibrium QFTs and ways to
solve them.

• Failing that, need to build a physically motivated consistent (with
QCD, ChPT, ...) model that can explain majority of SPS and
RHIC phenomena and predict LHC

• New era for high energy QCD/Hadronic physics –

Good: Lots of exciting phenomena

Bad?: No systematic ways to get them (yet)



Backup Slides
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Φ
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Takes the baseline from Single particle inclusive distribution.

Φx =

√√√√〈∆X2
〉

〈Ne〉
−
〈
∆x2

〉
incl

∆X =
Ne∑

i=1

(xi − 〈x〉incl)
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• Inclusive momentum distribution:

Pincl(p) =
〈np〉∑
p 〈np〉

=
〈np〉
〈Ne〉

∗ 〈p〉incl =
∑
p

pP (p) =
1

〈Ne〉
∑
p

p 〈np〉

∗
〈
∆p2

〉
incl

=
〈
p2
〉
incl

− 〈p〉2incl

• Event-by-event averages

〈p〉ebe =
1

Nevent

Nevent∑
ie=1

1

Ne

Ne∑
ie=1

pie

= 〈p〉incl −
〈∆Ne∆Me(p)〉

〈Ne〉
with Me(x) = (1/Ne)

∑
ie xie
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But

P (N) =

(
N + k − 1

k − 1

)(
〈N〉 /k

1 + 〈N〉 /k

)N 1

(1 + 〈N〉 /k)k

Variance: 〈
∆N2

〉
= 〈N〉 (1 + 〈N〉 /k)

with k ∼ 3− 4 and 〈N〉 ∼ 20− 30


