Toward a gravity dual of RHIC collision.

신상진 (HYU) @APCTP HIM 포항

 based on hep-th/0407215(PLB608,2005) hep-th/0511xxx to appear

- Jet Quenching : Introduction
- Open-Closed Duality
- AdS/CFT and QCD
- Black Hole and Thermalization
- Duality of Gluon propagation
- gravity dual of RHIC collision.

RHIC@Brookhaven NL

Relativistic Heavy Ion Collider

Au-Au collision

Relativistic Heavy Ion Collider

- E~100 GeV/nucleon
- Seek QGP
- Nuclei-Nuclei collisions at high energy are very different from a simple superposition of pp/np/nn

What is discovered?

- Original Aim: QGP, weakly interacting.
- Found something else!
 --a system with Thermal behavior

Evidence of Thermal Equilibium

- I. Abundance ratios for particle species shows equilibrium at freeze-out.
- 2. Flow : Evidence of collective interaction.

Flow

Anisotropy due to strong collective interaction and depends on the degree of thermalization.

HIM meeting

Implication of Thermalization

- means EquilibratedEqb. in such time scale
- Strongly interacting!

call it sQGP

Yet more interesting phenomena

and Another eveidence for strong interaction character is

Jet Quenching

Jet quenching in RHIC

p+p and d+Au data show the existence of back-to-back pairs of jets. Central Au+Au data show the jet peak around the trigger particle, at 0 degrees, but no recoil jets. Such absence of recoil jet is expected in the case of strong energy loss in a dense medium.

Jet quenching in RHIC

- Jets of pp do not appear in Au-Au collision.
- Gluon absorbed in medium by recollision, all by strong character → Thermalization. Impossible to handle in QCD.

The most dramatic observation in RHIC.

Central Question

1. What happen to the asymptotic freedom?

Why medium has strong coupling?

2. How to deal with strong coupling?

In this talk, I Claim: Jet quenching is described by AdS-Black Hole

More specifically:

THE MEDIUM CREATED BY RHIC COLLISION is described by the dual of ADS-BLACK HOLE.

Furthermore:

The whole process of RHIC collision can be described by a CLASSICAL GRAVITY As far as the YM-coupling is strong!

Steps:

- What is AdS/CFT?
- What is gravity dual of thermalized YM? AdS-BH!
- What is dual of gluon propagation in deconfined phase?
- Jet-Quenching in AdS/CFT?
- Dual of collision process?

a Digression for string theory by a few slides

Low energy character of string Th: Massless spectrum

• Open String: $\alpha' M^2 = J - 1$:gauge theory

• Closed string:
$$\frac{1}{4}\alpha' M^2 = J - 2$$
 : gravity

J=spin from vibration of string, -1=12(1+2+3+...)=regulated mass from quantum fluctuation of string

Open closed duality

unlike a point particle,

Objects with Structure like strings → requires Consistency. →Various String Dualities

Among them, what we need here is

Open-closed duality

Open-closed string connections

• Open \rightarrow closed St. perturbatively

• Closed \rightarrow Open sting only via D-brane

It's a nonperturbative effect discovered only in 90'

D_p -brane

- Closed string soliton- a nonperturbative object.
- That this object has dual description by dynamics of open string ending on it, is the major discovery of 90'

Gauge-Gravity duality

- Open 1-loop(→) /Closed tree[↑] (string dynamics according to time direction.
- Open=gauge/Closed=gravity
- Hence gauge/gravity duality.
- Such duality is formulated by Maldacena exactly as AdS/CFT correspondence.

From D-brane side : open string \Rightarrow gauge theory \Rightarrow SYM, N=4

From gravity side:

$$S = \frac{1}{(2\pi)^7 l_s^8} \int d^{10}x \sqrt{-g} \left(e^{-2\phi} \left(\mathcal{R} + 4(\nabla\phi)^2 \right) - \frac{2}{(8-p)!} F_{p+2}^2 \right),$$

For p=3, it has D3 solution:
$$ds^2 = f^{-1/2} (-dt^2 + dx_1^2 + dx_2^2 + dx_3^2) + f^{1/2} (dr^2 + r^2 d\Omega_5^2),$$

$$F_5 = (1+*) dt dx_1 dx_2 dx_3 df^{-1},$$

$$f = 1 + \frac{R^4}{r^4}, \qquad R^4 \equiv 4\pi g_s \alpha'^2 N.$$

Near r~0, geometry $\implies AdS_5 \times S^5$ $ds^2 = \frac{r^2}{R^2}(-dt^2 + dx_1^2 + dx_2^2 + dx_3^2) + R^2 \frac{dr^2}{r^2} + R^2 d\Omega_5^2,$

11/4/2005

Near horizon geometry of D3

AdS/CFT duality: Summary

- 1. String theory in 5d AdS is dual to N = 4 Super Yang Mill in 4d.
- 2. $5d v.s 4d \Rightarrow Holographic$ correspondence.
- 3. For <u>large</u> t' Hooft coupling, $\lambda = g_s N_c$, string theory \Rightarrow classical gravity.
- 4. Small coupling: hard theory.

11/4/2005

Gluon propagation in AdS background

Mikhailov(hep-th/0305196)

 $E = \frac{\sqrt{\lambda}}{2\pi} \int dt \frac{\vec{a}^2 - (\vec{v} \times \vec{a})^2}{(1 - \vec{v}^2)^2},$ with, $v = \frac{dx}{dt}, a = \frac{d^2x}{dt^2}$ Lienard formular for the radiation apart from square root

calculated energy of ripple along the string from N to S passing through the center.

Holography of radiation

Pt

SJS with Zahed

gluon propagation at boundary v.s null geodesic along the path passing the center.

θ

Position of P

 $r(\psi) = Rtan \psi$

We get point-sphere correspondence.

9³

Holography of radiation in Black hole background

P will be absorbed into the BH or never get to it according to the observer. The dual picture to this is stopping at $1/\pi T$

A prediction

 At fixed temp. Hadrons of size less than 1/πT will not show the Jet quenching phenomena.

Or,

For a fixed radius of nuclei, at low temperature, J-Q will not appear.

Situation of No Jet Quenching

More on

Gravity dual of RHIC collision

Sequence of events after mini-bang

- 1. Formation of High-T QGP
- 2. Expand and cool, at Tc : QGP to Hadrons.
- 3. Freeze-out : hadrons no longer interact with each other.

Corresponding Questions for Dual Gravity:

- Thermalization: Creation of AdS-BH
- Fireball cooling: Evolution of B.H.
- Deconfinement P.T: Hawking-Page P.T
- Fate of the Black hole?

Gravity description of *qq* dynamics

qq dynamics is described by the AdS string.

$$V = -\frac{c}{L}$$
, where $c = 4\pi^2 (2g_{YM}^2 N)^{1/2}$

HIM meeting

Closed string creation

- This process is unusual from flat space string point of view.
- The unusual effectiveness of creation of closed string.
- I for each interaction vertex.

What is gauge theory object for this?

- Lots of Glue balls!
- This unusual object is responsible to the unusual effectiveness of thermalization.
- What is then gravity picture of thermalization due to these glueballs?

Formation of AdS-BH

- The closed strings can leave the bdry and reach the center of AdS.
- When multitudes of closed strings arrive at the same time they form ads black hole.
- Focus effect of AdS help Equilibrium.

BH formation conditions

- Let $Q_s = N/\pi R_N^2$ be the transverse density. Then the condition of BH formation is $N \ge R^{-2}G_5Q_s^{-5}$
- Entropy, $S=T^3V$
- Hawking temperature, T= $\frac{1}{\pi \sqrt{N_c}} \left(\frac{M}{R^3}\right)^{1/4}$
- formation time: $t = \pi R = ... = \pi \Lambda_{QCD}$

Expansion and cooling

- Fixed entropy \rightarrow BH size is fixed.
- Choose co-ord. S.t we are on the probe brane in the BH b.g.

This is the set up of brane cosmology.

Brane cosmology and cooling

- Use DBI action of probe brane as in mirage cosmology:
- Get the dynamics of the probe brane r(t) in warped back ground.
- Motion of brane → Expansion of the brane universe(=RHIC fire ball) by induced metric.

Cooling rate

- The brane cosmology says: $a(\tau) = \tau^{1/2}$
- This is slower than the ideal fluid expansion $a(\tau) = \tau$
- Interaction, not only making the fireball fluid, it slows down the expansion.
- The Hydro. Must be replaced by GR.

11/4/2005

HIM meeting

Fate of AdS BH (I) Hawking Page transition(Large BH)

- Deconfinement → confinement phase transition.
- AdS BH metric and double Wick rotated non-extremal D4 solution compete.

$$Z = \dots + e^{-S_{AdSBH}/kT} + e^{-S_{D4}/kT} + \dots$$

One wins the other according to T.

Fate of AdS BH (2) Hawking Radiation(Small BH)

- One may imagine that the black hole formed is not a large black hole but a Small BH.
- Then they are not stable under the Hawking evaporation.
- Then the final stage of the black hole is nothing but a explosive evaporation which may be dual of Hadronization.
- One may calculate the evaporation rate

$$\frac{dM}{dt} \sim -(t_0 - t)^{-2/3}$$

Conclusion 1

1.Formation of ads BH→ thermalized strongly interacting firball.

- 2.BH horizon \rightarrow Jet quenching.
- 3.Cooling rate→ string cosmology
 - Hyrodynamics must be replaced by full GR.
- 4.Hawking-Page v.s Hawking Radiation for the freeze-out.

If you accept sQGP, you'd better to learn string theory

HIM meeting