Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

2005-11 중이온 미팅 (HIM 2005-11)_ DongJo Kim Yonsei University, Seoul Korea

<u>Outline of Talk</u>

- 1. A short Overview of RHIC results.
 - 1 RHIC history
 - ② Jet-Quenching (pion R_{AA}, Jet suppression)
 - ③ Flow (light hadrons, even heavier particles)
- 2. Extension from Light quarks to heavy quarks
- 3. How to measure Heavy flavor ?
 - ① Semi-leptonic heavy flavor decay (Cocktail/Converter)
 - 2 J/Ψ
- 4. PHENIX heavy flavour measurement
 - ① Open charm Results(R_{AA}, charm flow) Radiative energy loss, bottom contribution
 - J/psi Results (R_{AA})
 Suppression (Screening) vs
 Enhancement (recombination)
- 5. Toward Precision heavy flavor measurement6. Summary

<u>RHIC History</u>

RHIC program is operating very successfully. PHENIX online data transfer and reconstruction remarkable

<u>Selected Results at RHIC</u>

A. Jet suppression in central Au + Au collisions

- ① Suppression apparently flat for pt up to 10 GeV/c
- 2 Absence of suppression in d+Au

B. Strong elliptic flow

- Scaling of v2 with eccentricity shows that a high degree of collectivity built up at a very early stage of collision – Evidence for early thermalization
- ② Data described by ideal hydrodynamic models → fluid description of matter applies.

Particle Spectra Evolution

K. Adcox et al, Phys Lett B561 (2003) 82-92

"Peripheral"

Nuclear Modification Factor: R_{AA}

• We define the nuclear modification factor as:

$$R_{AA}(p_T) = \frac{\frac{1}{N_{evt}} \frac{d^2 N^{A+A}}{dp_T d\eta}}{\frac{\langle N_{binary} \rangle}{\sigma_{inel}^{N+N}} \frac{d^2 \sigma^{N+N}}{dp_T d\eta}}$$

- R_{AA} is what we get divided by what we expect.
- By definition, processes that scale with the number of underlying nucleon-nucleon collisions (aka N_{binary}) will produce R_{AA}=1.

 R_{AA} is well below 1 for both charged hadrons and neutral pions.

PRL 91 (2003) 072301

<u>Initial State effects ruled out</u>

- Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control.
- Jet Suppression is clearly a final state effect.

<u>The matter is extremely opaque</u>

Suppression is very strong (R_{AA} =0.2!) and flat up to 20 GeV/c

Energy loss of partons in dense matter \rightarrow A medium effect predicted in QCD

(Energy loss by colored parton in medium composed of unscreened color charges by gluon bremsstrahlung : LPM radiation) Gyulassy, Wang, Vitev, Baier, Wiedemann... See nucl-th/0302077 for a review. Baier, Dokshitzer, Mueller, Peigne, Shiff, NPB483, 291(1997), PLB345, 277(1995), Baier hep-ph/0209038

<u>Jet Quenching !</u>

Jet correlations in peotoal GoldrGold. reactions. Away side jet Sisangeorokfoopartic seaks > 2 GeV

<u>Collective Flow</u>

Identified charged hadron v2 indicates

- **1** Early thermalization
- ② Constituent quark scaling → Partonic collectivity
- Even Φ flows, within the errors consistent with other hadrons

Summary of RHIC results with light quarks

One of the central questions in high energy heavy ion physics is <u>whether a quark-gluon Plasma (QGP) has been discovered at RHIC.</u> (M.Gyulassy and L. McLerran, nucl-th/0405013, M.Gyulassy, nucl-th/0403032)

<u>Extension from light quarks to Heavy Quarks</u>

One of the central questions in high energy heavy ion physics is <u>whether a quark-gluon Plasma (QGP) has been discovered at RHIC.</u> (M.Gyulassy and L. McLerran, nucl-th/0405013, M.Gyulassy, nucl-th/0403032)

1 <u>Collective Flow</u> and <u>Jet Quenching</u> of light partons strongly suggest that QGP is discovered.

② Further detailed tests of jet tomography using heavy quarks could be decisive as a complementary test of the theory.

Open charm suppression, which can now be measured at RHIC by comparing pt distributions of D-mesons in d-Au and Au-Au collisions, is a **novel probe** of QGP dynamics.

J/psi suppression or enhancement mechanism should be nailed down with high statistical and systematical precision.

- Heavy quarks (charm and beauty) produced early in the collision. Live long enough to sample the plasma
- Intrinsic large mass scale allows precise calculations

What can we look in order to find out the characteristics or properties of the medium(QGP)

- \circledast Yields of charm and beauty pairs compared to first principle lattice simulations determine the energy density and temperature \rightarrow J/ Ψ suppression
- Comparison between light and heavy quark suppression distinguishes between theoretical models of energy loss in the QGP
 → Charm vs Light quark energy loss (Jet-Quenching)
 ○ Mass dependence of diffusion of boost quarks determined place
- Mass dependence of diffusion of heavy quarks determines plasma properties, e.g. viscosity and conductivity
 Charm flow

How to measure Heavy Flavor?

- Experimentally observe the decay products of Heavy Flavor PHENTIXIES (e.g. D-mesons)
 - Single electron measurements in p+p, Haddrofilt decay channels $D \rightarrow K\pi$, $D^0 \rightarrow \pi^+ \pi^- \pi^0$ $\sqrt{s_{NN}} = 130,200,62.4 \text{ GeV}$ - Semi-leptonic decays $D \rightarrow e(\mu) \text{ K } v_e \text{ } D^{\pm} \rightarrow K\pi\pi$

PHENIX detector at RHIC

Designed to measure electrons, muons, photons and hadrons.

Key Parameters:

<u>Electrons:</u> -0.35 < y < +0.35 Radiation Length < 0.4%PID with RICH/EMC

<u>Muons:</u> 1.2 < |y| < 2.2

Very high data and trigger bandwidth

How does PHENIX see the J/Ψ ?

New Electron Results

We use two different methods to determine the non-photonic electron contribution (Inclusive = photonic + non-photonic)

Cocktail subtraction – calculation of "photonic" electron background from all known sources
 Converter subtraction– extraction of "photonic" electron background by special run with additional converter (X = 1.7%)

Non-Photonic Electron Spectra

Proton-Proton Baseline

Gold-Gold Suppression

Clear high pT suppression developing towards central collisions

<u>Suppression of High p_T Charm</u>

$$R_{AA} = \frac{\left(\frac{d^{3}N}{dp^{3}}\right)_{AA}}{T_{AA} \cdot \left(\frac{d^{3}\sigma}{dp^{3}}\right)_{pp}}$$

Strong modification of the spectral shape in Au+Au central collisions is observed at high pT

Theory Comparison

- Data favor models with large parton densities and strong coupling
- Main uncertainty:
 - Bottom contribution at high p_T

Theory curves (1-3) from N. Armesto, *et al.*, hep-ph/0501225 (4) from M. Djordjevic, M. Gyulassy, S.Wicks, Phys. Rev. Lett. 94, 112301

20/43

Charm quark exhibit a degree of thermalization ~ comparable to that of light partons

Theory curves from: Greco, Ko, Rapp: Phys. Lett. B595 (2004) 202

Charming? Summary

- Electrons from heavy flavor decays were measured at $\sqrt{s} = 200$ GeV in Au+Au collisions at RHIC
- Nuclear modification factor R_{AA} shows a strong suppression of the electrons at high p_T in Au+Au collisions
- Observed R_{AA} favors models with large parton densities and strong coupling
- Charm flows! $v_2(D) \sim 0.6 \times v_2(p)$, indicating substantial coupling of the charm quarks to the bulk dynamics of the medium

Beauty Limits Suppression Factor?

Therefore, if the preliminary PHENIX data suggesting $R_{AA}(e) < 0.5$ are confirmed, it will be a theoretical challenge to devise novel energy loss mechanisms that make the sQGP opaque to bottom quarks of $p_T \sim 10 - 20$ GeV without over-predicting the observed light hadron quenching in the $p_T \sim 10$ GeV range.

M. Djordjevic et al., nucl-th/0507019

<u>Not All Theorists Agree</u>

Now Armesto *et al.* also include beauty and can find consistent results with $R_{AA} = 0.4$

<u>Charm suppression and Flow</u>

In a calculation by Teaney and Moore (hep-ph/0412346), they calculate the expected elliptic flow (v2) and transverse momentum modifications for different charm quark diffusion coefficients(free parameter). The two effects go hand in hand.

FIG. 4: (Color online) (a) The nuclear modification factor R_{AA} for charm quarks for representative values of the diffusion coefficient. (b) $v_2(p_T)$ for charm quarks for the same set of diffusion coefficients given in the legend in (a). In perturbation theory, $D \times (2\pi T) \approx 6 (0.5/\alpha_s)^2$. The model for the drag and fluctuation coefficients is referred to as LO QCD in the text. The band estimates the light hadron elliptic flow for impact parameter b = 6.5 fm using STAR data [2].

PHENIX DatarResults CSpeakilfor Mishemselves

26/43

A .Different predictions on J/Ψ behaviour when QGP is formed

- Color screening will lead to suppression of charmonium production in heavy ion collisions (*T. Matsui, H. Satz, Phys. Lett. B178(1986)416*).
- 2 Lattice QCD results show that the confining potential between heavy quarks is screened at high temperature. This screening should suppress bound states such as J/Ψ . However, recent lattice results indicate that the J/Ψ spectral functions only show modest modification near the critical temperature, and thus may not be suppressed until higher T.
- ③ But after taken the **recombination** into account,

much less suppression or even enhancement is predicted

A. Andronic, P.B. Munzinger et al., nucl-th/0303036 L. Grandchamp, R. Rapp, hep-ph/0103124

R.L. Thews et al., Phys. Rev. c63(2001)054905

B .Disentangle Normal nuclear effects

Gluon shadowing, Nuclear Absorption Initial state energy loss, Cronin effect.

NA50 Conclusions

"A clear onset of the anomaly is observed. It excludes models based on hadronic scenarios since only smooth behavior with <u>monotonic derivatives</u> can be inferred from such calculations" Phys. Lett. B 450, 456 (1999).

Model assuming:

- charm production scales as DY
- color octet c-c is absorbed by nucleons with a $\sigma = 6.2$ mb
- no absorption with comovers π, ρ

Normal Nuclear + Shadowing

Theory Vogt: nucl-th/0507027

Model of cold nuclear matter effects in agreement with dAu Underpredicts suppression in AuAu and CuCu

Looks Like CERN Suppression?

J/ψ nuclear modification factor \textbf{R}_{AA}

Comparison with NA50 data presented wrt Npart and normalized to NA50 p+p point.

Suppression level is similar between the two experiments, but 1) the collision energy is 10 times higher (200GeV wrt 17GeV) 2) the rapidity window for NA50 is $|y| \in [0,1]$

Too Much Suppression in Theory!

Models that were successful in describing SPS data fail to describe data at RHIC

→ too much suppression

J/ψ nuclear modification factor R_{AA}

Uncertainty is large !

J/ψ nuclear modification factor R_{AA}

Implementing regeneration:

much better agreement with the data

At RHIC, Recombination compensates stronger QGP screening?

But still there are uncertainties in their calculations

J/Y Summary

PHENIX J/ ψ centrality dependence:

- 1) Models with only nuclear absorption don't quite have enough suppression
- 2) Models without recombination have too much suppression
- 3) Models with recombination are in reasonable agreement with the data
- Suppression for most central collisions is similar to NA50
- Energy density and gluon density at RHIC should be much higher (2-3 times, 200GeV vs 17GeV)?
 At RHIC:

Recombination compensates stronger QGP screening?

Needed Input of Total Charm

Input from both STAR and PHENIX is needed.

<u>More in the Future...</u>

- Reduce systematic errors and finalize CuCu and AuAu data.
- Improved statistics for baseline Run-5 Proton-Proton and future p-A or d-A
- Working on $J/\psi v_2$, but statistically very challenging with Run-4 and Run-5 data sets \rightarrow BUP06 Au-Au running !!!

 A wealth of new PHENIX data on heavy quarks and heavy quarkonia.

• Charm is a very optimal probe of thermalization and properties of the medium, but the price for this may well be the loss of a probe via quarkonia for deconfinement.

The precision Measurements

Detector upgrade

➢ Precise measurement of Displaced vertex

➢Onium measurements

≻Trigger

RHIC II Luminosity

Silicon Vertex Detector

- Four barrel layers
 - Two ALICE pixel bus layers
 - Two strip-pixel layers
- Four end-cap pixel layers
- Displaced vertex (σ ~50 μm)
- Full azimuthal inner tracking $|\eta| < 2.4$
 - > Improve acceptance for γ -jet correlations, D \rightarrow K π
- Connect to tracks in central and muon arms
 - Tag heavy flavor decays
 - $\succ c, b \rightarrow e, \mu$
 - $\succ \mathsf{B} \to \mathsf{J}/\Psi$
 - Improve onium resolution
 - Eliminate decay hadrons
 - Reduce high-p_T background

Nose Cone Calorimeter

- Replace central arm magnet nosecones (Cu) w/ tungstensilicon calorimeters
- Coverage at forward/backward rapidity: 0.9 < |η| < 3.5
 - > γ/π^0 separation for $p_T < 30$ GeV/c
 - Jet identification
- γ identification gives good acceptance for $\chi_c \rightarrow J/\Psi + \gamma$

<u>Muon Trigger Upgrade</u>

- Three layers of RPCs with 2D (θ,φ) pad readout
- Provides online momentum measurement to improve Level-1 trigger rejection
 - Single-particle
 - $> p_T \text{cut}$
 - ➤ W spin-measurements in pp
 - Two-particle
 - ► M_{inv} cut
 - ➢ onium measurements in AA
 - Necessary to take complete advantage of luminosity upgrades
- Provides improved high-multiplicity background rejection

<u>RHIC II Luminosity – CAD</u> <u>Guidance</u>

W. Fischer, T. Roser, I. Ben-Zvi, A. Fedotov, BNL C-AD, 16-Mar-2005

Classical proton radius [m]

1.53E-18

http://rhicii-heavy.bnl.gov/doc/RHIC_II_Luminosity_Roser.xls

Maximum Luminosity Estimates for RHIC II

Beams	unit	Р	р	unit	Si	Cu	d	р	Au	unit	Au
Charge number Z		1	1		14	29	1	1	79		79
Mass number A		1	1		28	63	2	1	197		197
Relativistic y		108	271		108	108	107	108	107		107
Revolution frequency	kHz	78.2	78.2	kHz	78.2	78.2	78.2	78	78.2	kHz	78.2
Normalised emittance, 95%, min	mm mrad	12	12	mm mrad	12	12	12	12	12	mm mrad	10
Ions/bunch, initial	10 ⁹	200	200	10 ⁹	10.7	5.2	150	200	1.0	109	1.0
Charges per bunch	10 ⁹ e	200	200	10 ⁹ e	150	150	150	200	80	10 ⁹ e	80
No of bunches		110	110		110	110	110	110	110		110
Average beam current/ring	mA	275	275	mA	206	206	206	275	110	mA	110
Luminosity at one IP	unit	P-P	P-P	unit	Si-Si	Cu-Cu	d-Au	p-Au	Au-Au	unit	Au-Au
Beam-beam parameter per IP		0.0123	0.0123		0.0046	0.0043	0.0024	0.0048			0.0024
							0.0036	0.0048			
β*	m	1.0	0.5	m	1.0	1.0	2.0	2.0		m	0.5
Peak luminosity	10 ³⁰ cm ⁻² s ⁻¹	150	750	10 ²⁸ cm ⁻² s ⁻¹	42	10	28	37		10 ²⁶ cm ⁻² s ⁻¹	90
Peak / average luminosity		1.5	1.5		1.3	1.3	1.5	1.5			1.3
Average store luminosity	10 ³⁰ cm ⁻² s ⁻¹	100	500	10 ²⁸ cm ⁻² s ⁻¹	32	8	19	25		10 ²⁶ cm ⁻² s ⁻¹	70
Time in store	%	55	55	%	55	55	55	55		%	60
Luminosity/week	pb"	33	166	nb"	108	25	62	83		nb"	2.5
Luminosity/week, achieved	pb"	0.9		nb ⁻¹		2.4	4.5			nb ⁻¹	0.16

x 35 increase for pp x 10 increase for CuCu x 15 increase for dAux 15 increase for AuAu

RHIC II Yields - ADF, MJL Guidance

Machine sqroot(s)	RHIC II 200 GeV		PHENIX								
Species 1 mass Species 2 mass luminosity/week number of weeks PHENIX uptime Integrated luminosity	1 33 /pb/wk 12 0.6 237.6 /pb	р р	RHIC II pp luminosity (average) PHENIX chi_c acceptances from AI (muon arm acceptance is for south	1 x 10^32 N229 arm only, I	hence facto	or of 2)	PHENIX J PHENIX U Branch fa Collision RF efficie	psi and p Ipsilon ac actors fron vertex sig ncy 80% (si' acceptanc ceptance fro n PDG SVTX covers in central pe	ces from PP m Axel Dree s +/- 10 cm ak)	G038 95
Signal	p+p d o /dy units	ref. dy	process / source	branch factor	nuclear scaling	collision vert cut	minbias trig eff	Level 1 trig eff	acceptance	reconstr efficiency	yield
Jpsi->ee psi(2 S)->ee chi_c0->gamma Jpsi->ee chi_c1->gamma Jpsi->ee chi_c2->gamma Jpsi->ee Y(0,1,2)->ee	673000 pb 94220 pb 6510000 pb 2100000 pb 6950000 pb 86 pb	1 1 1 1 1	Jpsi ds/dy / PHENIX AN258 Psi/Jpsi ratio from hep-ph/9502270 sigma(chi->gamma Jpsi->ee) AN229 sigma(chi->gamma Jpsi->ee) AN229 sigma(chi->gamma Jpsi->ee) AN229 Ups B*ds/dy / hep-ph/9502270	0.059 7.60E-003 3.90E-004 1.62E-002 8.00E-003 1	1 1 1 1 1	0.55 0.55 0.55 0.55 0.55 0.55	0.75 0.75 0.75 0.75 0.75 0.75	0.76 0.76 0.76 0.76 0.76 0.76	2.27E-002 2.27E-002 6.45E-004 6.45E-004 6.45E-004 4.00E-002	0.82 0.82 0.82 0.82 0.82 0.82	55054 993 100 1340 2190 210
Jpsi->mumu psi(2 S)->mm chi_c0->gamma Jpsi->mn chi_c1->gamma Jpsi->mn chi_c2->gamma Jpsi->mn Y(0,1,2)->mm	451542 pb 63215.88 pb 6510000 pb 2100000 pb 6950000 pb 43 pb	2.2 2.2 2 2 2 2.2	2 Jpsi ds/dy / PHENIX AN255 2 Psi/Jpsi ratio from hep-ph/9502270 2 sigma(chi->gamma Jpsi->mm) AN22 2 sigma(chi->gamma Jpsi->mm) AN22 2 sigma(chi->gamma Jpsi->mm) AN22 2 Ups B*ds/dy / hep-ph/9502270	0.059 7.60E-003 3.90E-004 1.62E-002 8.00E-003 1	1 1 1 1 1	0.55 0.55 0.55 0.55 0.55 0.55	0.75 0.75 0.75 0.75 0.75 0.75	0.8 0.8 0.8 0.8 0.8 0.8	1.28E-001 1.28E-001 1.20E-002 1.20E-002 1.20E-002 8.90E-002	0.8 0.8 0.8 0.8 0.8 0.8	468741 8453 3822 51215 83702 528

Assume CAD "Maximum Average" Luminosity Projection, 12 week runs, known PHENIX uptime (60%) to get Live Delivered Luminosity.

- Use measured values when possible to calculate pp o's, B.R.'s.
- > Assume nuclear scaling $(AB)^{\alpha}$, w/ α =1 for Y, α =0.92 for others.
- Use stated RF efficiency, diamond size to get vertex cut efficiency.
- Use measured PHENIX performance, assume PHENIX SiVTX, Nosecone Calorimeter, Muon Trigger upgrades to get acceptances, efficiencies.

<u>Onium Yields</u>

Signal/System	pp (200 GeV)	pp (500 GeV)	CuCu (200 GeV)	AuAu (200 GeV)	d <i>A</i> u (200 GeV)	
J/¥→ee	55,054	609,128	73,921	44,614	29,919	
Ψ´(25)→ее	993	10,985	1,333	805	540	
∠_ c0 →y+ J/Ψ→ee	100	2,578	134	81	54	
z_c1→y+ J/¥→ee	1,340	40,870	1,800	1,086	728	
χ_ c2→ γ + J/Ψ→ee	2,190	59,296	2,941	1,775	1,190	
Y(0,1,2)→ee	210	3,032	547	397	184	
B→J/¥→ee	1,237	41,480	4,567	3,572	1,085	
Ј/Ѱ→щ	468,741	5,483,006	653,715	394,535	258,136	
Ψ´(25)→μμ	8,453	98,880	11,789	7,115	4,655	
χ_¢0 ⇒γ+ Ј/Ψ→щ	3,822	99,824	5,330	3,217	2,105	
χ_ с1 →у* Ј/Ψ→щ	51,215	1,582,561	71,425	43,107	28,204	
χ_с2 , •З/Ψ-→μμ	83,702	2,296,069	116,732	70,451	46,095	
т (0,1,2)→μμ	528	7,723	1,429	1,035	469	
В→Ј∕Ұ→ӊџ	2079	76466	5756	3752	1824	

- > Precision measurements of the J/Ψ
- Exploratory measurements of the other onium states.
- Steep increase at $\sqrt{s} = 500$ GeV illustrates the significant difficulties for measurements at lower energies.

Synergistic Benefits of Detector/Luminosity Upgrades for

Open Heavy Flavor Measurement

- Detector upgrades assist by determining decay vertex.
 - Allows direct measurement of charm via $D \rightarrow K\pi$
 - > Reduces backgrounds at low- p_T
 - Allows statistical separation of c/b at high-p_T
 - Allows direct elimination of hadron decay muons.

- Luminosity upgrades extend p_T reach and allow reduction of systematic errors.
 - Additional special runs (*e.g.*, w/ different converter thicknesses and locations, different field configurations, etc.)
 - ➢ Finer binning of DCA dependence for *c/b* separation.
 - Better determination of punchthrough absorption.

Not All Experiments Agree Either

 R_{AA} agrees, but the proton-proton references are different by ~ 50%.

Also, can the theory resolve an R_{AA} suppression value of 0.2? Is the parton density then too high?

Not shown were "30-40%" systematic errors.

47/43

$$N_{J/\Psi} = N_{J/\Psi}^{dir} + N_{J/\Psi}^{th}$$

<u>Transverse Momentum</u>

We fit the p_t spectrum using $A[1+(p_t/B)^2]^{-6}$ to extract $< p_t^2 >$

Hydrodynamic?

51/43

Balancing Effects

Rapidity Dependence

$J/\psi BdN/dY$

Common Feature: Rapidity Narrowing

FIG. 19: Rapidity spectra of J/ψ production in pp interactions at 200 GeV.

See talk by Thews

Figure 8. The J/ψ survival probability as function of the parton density for Pb-Pb (left) and for Cu-Cu (right) collisions at RHIC energy; the dotted line corresponds to a medium of uniform parton density, the solid line to collisions with parton densities determined by the profiles of the colliding nuclei.

55/43

fault parameters.

trality at RHIC energy.

Participant Scaling?

Fig. 3. Different contributions to the heavy-to-light ratio of D mesons in central (0–10%) Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Different curves correspond to the case in which the charm distribution is described i) with the same p_T spectrum, fragmentation function and parton energy loss as a light quark, ii) with a realistic charm p_T spectrum only, iii) with the charm p_T spectrum and fragmentation function of a realistic charm quark and iv) for the realistic case which includes the mass dependence of parton energy loss.

Fig. 2. LHS: Nuclear modification factors for c quarks, D mesons and their decay electrons in central (0–10%) Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV for different time-averaged strengths of the parton energy loss. RHS: The ratio of the nuclear modification factor plotted on the LHS, divided by the same factor calculated for a massless charm quark.

FIG. 1: The differential cross section (per nucleon pair) of charm (upper blue) and bottom (upper red) quarks calculated to NLO in QCD [34] compared to single electron distributions calculated with the fragmentation and decay scheme of Ref. [34]. The solid, dotted and long dashed curves show the

Figure 2. Final parton elliptic flows (left panel) and D meson elliptic flow (right panel) as a function of p_T in Au + Au at $\sqrt{s_{NN}} = 200$ GeV with b = 8 fm at RHIC, computed using the transport model MPC [29]. The D meson v_2 was obtained from the parton flows via the quark coalescence formula in [13]. The dashed lines correspond to the two extreme scenarios in [13] (see text). For hadronization via independent fragmentation, charm hadron v_2 is approximately the same as the charm quark v_2 .

More Regeneration

J/ψ nuclear modification factor R_{AA}

62/43

Super-Sensitive / Super-Complex

 J/ψ by its heavy mass and direct coupling to incoming gluons at RHIC energies is sensitive to initial parton distribution functions (PDF).

Modifications of these PDF's in nuclei will affect the initial production rate of charm-anticharm quark pairs.

Production of direct J/ψ is suppressed by the need for an additional radiated gluon to conserve quantum numbers, so another mechanism is needed.

Hadronic or pre-hadronic interactions can suppress J/ψ yields.

Nuclear Parton Distribution Functions

At low $x \sim 10^{-2}$, a suppression of partons is observed in the nuclear wavefunction (shadowing).

This suppressing any hard process coupling to those partons relative to point-like scaling ($\alpha = 1$).

At high x ~ 10⁻¹, an enhancement (<u>anti-shadowing</u>) may enhance hard processes.

Color Glass Condensate or Saturation Physics gives a universal QCD explanation for low x shadowing.

Evolution of Modified PDFs

As one probes a proton or nucleus at higher momentum transfer (shorter wavelength), there is an enormous growth of low x gluons.

Thus we might expect that saturation or shadowing effects will play a larger role in higher energy collisions sensitive to a similar range of x.

Initial Parton Energy Loss

If the incoming hadron de-hadronizes as it interacts in the nucleus, an individual high-x parton starts to radiate (losing energy).

At lower energies (SPS, FNAL fixed target) where one is near J/ ψ production threshold, a small energy loss can result in a strong suppression of production.

66/43

Parton Energy Loss

Drell-Yan production in proton-nucleus collisions is sensitive to parton energy loss..

Must carefully separate nuclear shadowing effects and energy loss effects both of which lead to suppression of Drell-Yan pairs.

E772 and E866 at Fermilab

dE/dx = $2.73 \pm 0.37 \pm 0.5$ GeV/fm (from hadronization due to confinement) dE/dx ~ 0.2 GeV/fm (from gluon radiation due to nuclear environment)

"This is the first observation of a non-zero energy loss effect in such experiments."

Johnson, Kopeliovich, Potashnikova, E772 **67/43** Phys. Rev.C 65, 025203 (2002) hep-ph/0105195 Phys. Rev. Lett. 86, 4487 (2001) hep=ex/0010051

Initial Parton Multiple-Scattering

Initial state multiple-scattering of the parton leads to an enhancement in the p_T of the final J/ ψ product.

This enhancement is often referred to as the "Cronin Effect." Despite the phenomenological success of incorporating this multiple scattering, there are still open questions about this mechanism.

Also, multiple scattering inherently leads to radiation.

<u>Re-Interactions</u>

After production of the charm-anticharm pair, it may re-interact during its traversal of the remaining nuclear material.

These re-interactions may be of a precursor to the J/ ψ (color octet cc-g state) or of the physical J/ ψ itself.¹

In heavy ion reactions, the quarkonia state may be further suppressed due to color screening in medium.²

¹Arleo, Gossiaux, Gousset, Aichelin, hep-ph/9907286 ²Matsui, Satz, Phys. Lett. B178: 416 (1986). ²NA50 Phys. Lett. B521, 195 (2001)