Korea-EU ALICE Collab. Oct. 9, 2004, Hanyang Univ., Seoul

Hadronic multiplicity at RHIC and LHC

Marzia Nardi CERN – Th. Div.

Introduction on the **Color Glass Condensate** and results on hadron multiplicity for:

- Au-Au and d-Au collisions at RHIC, $\sqrt{s_{\text{NN}}}$ =20÷200 GeV
- Pb-Pb and p-Pb collisions at LHC, $\sqrt{s_{NN}}$ = 5500 GeV
 - total multiplicity
 - centrality dependence
 - rapidity dependence

Hadron scattering at high energy

New regime of QCD: α_s is small but perturbative theory is not valid, due to strong non-linear effects A new phenomenon is expected in these conditions:

parton saturation

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Gluon density in hadrons

McLerran, hep-ph/0311028

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Color Glass Condensate

Classical effective theory originally proposed by McLerran and Venugopalan to describe the gluon distribution in large nuclei.

The valence quarks of the hadrons (*fast partons*) are treated as a source for a classical color field representing the small-x (*slow*) gluons. The classical approximation is appropriate since the slow gluons have large occupation numbers.

The theory implies a non-linear renormalization group equation [JIMWLK]

Color Glass Condensate

- Color : gluons are colored
- Glass : the gluons at small x are emitted from other partons at larger x. In the infinite momentum frame the fast partons are Lorentz dilated, therefore the low x gluons evolve very slowly compared to their natural time scale.
- Condensate : balance between gluon emission and gluon recombination : $\rho \sim \alpha_s \rho^2$, or $\rho \sim 1/\alpha_{s,}$ (Bose condensate)

Color Glass Condensate

- Universal form of matter controlling the high energy limit of all strong interactions
- First principle description of
 - -high energy cross-sections
 - -parton distribution functions at small x
 - -initial conditions for heavy ion collisions

-distribution of produced particles

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Mathematical formulation of the CGC

$$\mathbf{Z} = \int [dA] [d\rho] exp\left(iS[A,\rho] - F[\rho]\right)$$

Effective theory defined below some cutoff X_0 : gluon field in the presence of an external source ρ .

The source arises from quarks and gluons with $x \ge X_0$ The weight function $F[\rho]$ satisfies renormalization group equations (theory independent of X_0).

The equation for F (JIMWLK) reduces to BFKL and DGLAP evolution equations.

Bibliography on CGC

MV Model

- <u>McLerran, Venugopalan</u>, Phys.Rev. D 49 (1994) 2233, 3352; D50 (1994) 2225
- <u>A.H. Mueller</u>, hep-ph/9911289
- **JIMWLK Equation**
- Jalilian-Marian, Kovner, McLerran, Weigert, Phys. Rev. D 55 (1997) 5414;
- Jalilian-Marian, Kovner, Leonidov, Weigert, Nucl. Phys. B 504 (1997) 415; Phys. Rev. D 59 (1999) 014014

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

There is a critical momentum scale Q_s which separates the two regimes : Saturation scale

- For p_T < Q_s the gluon density is very high, they can not interact independently, their number saturates
- For p_T > Q_s the gluon density is smaller than the critical one, perturbative region

The CGC approach is justified in the limit $Q_s >> \Lambda_{QCD}$:

- ok at LHC
- ~ ok at RHIC

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Saturation scale

- Boosted nucleus interacting with an external probe
- Transverse area of a parton $\sim 1/Q$
- Cross section parton-probe : $\sigma \sim \alpha_s/Q^2$
- Partons start to overlap when $S_A \sim N_A \sigma$
- The parton density saturates
- Saturation scale : $Q_s^2 \sim \alpha_s(Q_s^2)N_A/\pi R_A^2 \sim A^{1/3}$
- At saturation N_{parton} is proportional to $1/\alpha_s$
- Q_s² is proportional to the density of participating nucleons; larger for heavy nuclei.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Saturation scale

$$Q_s^2 = \frac{8\pi^2 N_c}{N_c^2 - 1} \ \alpha_s(Q_s^2) \ xG(x, Q_s^2) \ \frac{n_{part}(b)}{2}$$

[A.H. Mueller Nucl. Phys. B558 (1999) 285]

• Q_s^2 depends on the impact parameter and on the nuclear atomic number through $n_{part}(b)$

• Self-consistent solution:

$$Q_{S}^{2} = 2 \text{ GeV}^{2} \quad xG(x, Q_{S}^{2}) = 2 \quad x=2Q_{S}/\sqrt{s}$$

 $\alpha_{s}=0.6 \quad b=0 \quad \sqrt{s} = 130 \text{ GeV} \quad |\eta| < 1$

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Parton production

We assume that the number of produced particles is :

$$\begin{aligned} \left. \frac{d^2 N}{d^2 b d\eta} \right|_{|\eta| < 1} &= c \left. \frac{N_c^2 - 1}{4\pi^2 N_c} \right. \frac{1}{\alpha_s} \left. Q_s^2 \right. \\ \hline \mathbf{Centrality \ dependence \ !} \\ \hline \mathbf{Centrality \ !} \\ \hline \mathbf{Centr$$

c is the "parton liberation coefficient"; xG(x, Q_s^2) ~ $1/\alpha_s(Q_s^2) \sim \ln(Q_s^2/\Lambda_{QCD}^2)$.

The multiplicative constant is fitted to data (PHOBOS,130 GeV, charged multiplicity, Au-Au 6% central): $c = 1.23 \pm 0.20$

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

First comparison to data dN/dŋ vs Centrality at ŋ=0

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Number of participants: variables

Side view

Front view

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Number of participants: definitions

- Nuclear profile function (cilindrical coordinates)
- •Thickness function : $T_{A}(\mathbf{s}) = \int_{-\infty}^{+\infty} dz \ \rho_{A}(\mathbf{s}, z)$ norm. : $\int d\mathbf{s} T_{A}(\mathbf{s}) = 1$

• Overlap function :

$$T_{AB}(\mathbf{b}) = \int \mathrm{d}\mathbf{s} \ T_A(\mathbf{s}) T_B(\mathbf{b} - \mathbf{s})$$

Marzia Nardi

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Number of participants: calculation

- Eikonal approximation: interacting nucleons do not deviate from original trajectory (early stages of A-B collision)
- Pointlike nucleons
- •The number of participants (wounded nucleons) is:

$$\begin{split} N_{part}^{AB}(\mathbf{b}) &= N_{part}^{A}(\mathbf{b}) + N_{part}^{B}(\mathbf{b}) = \\ &= A \int \mathrm{d}s^{2}T_{A}(\mathbf{s}) \left\{ 1 - \left[1 - \sigma_{N}T_{B}(\mathbf{b} - \mathbf{s})\right]^{B} \right\} + \\ &+ B \int \mathrm{d}s^{2}T_{B}(\mathbf{b} - \mathbf{s}) \left\{ 1 - \left[1 - \sigma_{N}T_{A}(\mathbf{s})\right]^{A} \right\} \end{split}$$

$$\bullet \mathsf{The} \mathsf{Cleppsift} \mathsf{P} \mathsf{isp-s}$$

$$n_{part}^{AB}(\mathbf{b}, \mathbf{s}) = A T_{A}(\mathbf{s}) \left\{ 1 - \left[1 - \mathcal{O}_{N}T_{B}(\mathbf{b} + \mathbf{s})\right]^{B} \mathsf{Integring}} \mathsf{b} + \mathsf{s}) \left\{ 1 - \left[1 - \sigma_{N}T_{A}(\mathbf{s})\right]^{A} \right\}$$

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Energy dependence

We assume the same energy dependence used to describe HERA data;

at y=0:
$$Q_s^2(x) = Q_{s0}^2 \left(\frac{x}{x_0}\right)^{-\lambda} = Q_{s0}^2 \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^{\frac{\lambda}{1+\lambda/2}}$$

with λ =0.288 (HERA)

The same energy dependence was obtained in Nucl.Phys.B 648 (2003) 293; 640 (2002) 331; with $\lambda \sim 0.30$ [Triantafyllopoulos , Mueller]

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Energy dependence/ HERA

HERA data exhibit scaling when plotted as a function of the variable

$$\tau = \mathbf{Q}^2 / \mathbf{Q}_s^2$$

where

$$Q_{s}^{2}=Q_{s0}^{2}(x_{0}/x)^{\lambda}$$

and $\lambda \sim 0.288$

[Golec-Biernat, Wuesthoff, Phys. Rev. D59 (1999) 014017; 60 (1999) 114023]

Marzia Nardi

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Energy dependence : pp and AA

D. Kharzeev, E. Levin, M.N. hep-ph / 0408050

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Energy and centrality dependence / RHIC

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Rapidity dependence

Formula for the inclusive production:

$$E\frac{d\sigma}{d^3p} = \frac{4\pi N_c}{N_c^2 - 1} \frac{1}{p_t^2} \times \int^{p_t} dk_t^2 \,\alpha_s \,\varphi_{A_1}(x_1, k_t^2) \,\varphi_{A_2}(x_2, (\mathbf{p} - \mathbf{k})_t^2) \\ \frac{[\text{Gribov, Levin, Ryskin, Phys. Rep.100 (1983), 1]}}{[\frac{1}{2}}$$

Multiplicity distribution:
$$\frac{dN}{dy} = \frac{1}{S} \int d^2 p_t E \frac{d\sigma}{d^3 p}$$

S is the inelastic cross section for min.bias mult. (or a fraction corresponding to a specific centrality cut) φ_{A} is the unintegrated gluon distribution function: $xG(x, Q^{2}) = \int^{Q^{2}} dk_{4}^{2} \varphi_{4}^{2}$

$$xG(x,Q^2) = \int^{Q^2} dk_t^2 \,\varphi(x,k_t)$$

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Rapidity dependence in nuclear collisions

 $x_{1,2}$ =longit. fraction of momentum carried by parton of $A_{1,2}$ At a given y there are, in general, two saturation scales:

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Results : rapidity dependence

Au-Au Collisions at RHIC

PHOBOS

W=200 GeV

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Parton saturation at lower energies?

Is the CGC theory applicable at SPS energy ? Condition of validity : $Q_s^2 * \Lambda_{QCD}^2$. At (normal) RHIC energies: $Q_s^2 \sim 1 \div 2 \text{ GeV}^2$ Central Pb-Pb at $\sqrt{s_{NN}}=17 \text{ GeV}$: $Q_s^2 \sim 1.2 \text{ GeV}^2$, comparable to peripheral (b~9 fm) Au-Au at $\sqrt{s_{NN}}=130$ GeV.

RHIC: run at $\sqrt{s_{NN}} \sim 20$ GeV, comparable to SPS energy: test of saturation at low energy.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Test of CGC :

d-Au collisions

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Deuteron wave function

$$\psi_{J_z}(\mathbf{r}) = \frac{u(r)}{r} \Phi_{1J_z0}(\Omega) + \frac{w(r)}{r} \Phi_{1J_z2}(\Omega)$$

where [Huelthen, Sugawara, "Handbuck der Physik", vol.39 (1957)]:

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Predictions for d-Au

Predictions in disagreement with PHOBOS data !!!

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Problems and solutions

- Present approximation not accurate for deuteron
 we use Monte Carlo results for N_{part}
- proton saturation momentum more uncertain
 - we use the same Q_{sat} as in the Golec-Biernat, Wuesthoff model
 - [dashed line, next plot]
- CGC not valid in the Au fragmentation region

 we assume dN/dη=N_{part}^{Au} dN_{pp}/dη in the Au fragmentation region [solid line, next plot]

After the corrections...

BRAHMS, nucl-ex/0401025

PHOBOS, nucl-ex/0311009

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Predictions for LHC

Our main uncertainty : the energy dependence of the saturation scale.

• Fixed
$$\alpha_s$$
:

$$Q_s^2(x) = Q_{s0}^2 \left(\frac{x}{x_0}\right)^{-\lambda} = Q_{s0}^2 \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^{\frac{\lambda}{1+\lambda/2}}$$

• Running α_s :

$$Q_s^2(W) = \Lambda_{QCD}^2 \exp\left(\sqrt{2\,\delta\,\ln(W/W_0) + \ln^2(Q_s^2(W_0)/\Lambda_{QCD}^2)}\right)$$

we give results for both cases...

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Centrality dependence / LHC

Solid lines : constant α_s dashed lines : running α_s

Pb-Pb collisions at LHC

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Pseudo-rapidity dependence

Marzia Nardi

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Other models...

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

➤ The parton saturation model gives a reasonnable description of hadron multiplicity at RHIC for high energies (130, 200 GeV), centrality and rapidity dependence

Lower energy collisions and different interacting systems (d-Au) useful to define its limits of applicability

>LHC will provide the best opportunity to study CGC

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.

Bibliography

D.Kharzeev, M.N.	Hadron production in nuclear collisions at RHIC and high density QCD	Phys.Lett.B507: 121, 2001
D.Kharzeev, E.Levin	Manifestation of high density QCD in the first RHIC data	Phys.Lett.B523: 79, 2001
D.Kharzeev, E.Levin, M.N.	The onset of classical QCD dynamics in relativistic heavy ion collisions	hep-ph/0111315
D.Kharzeev, E.Levin, L.McLerran	Parton saturation and N _{part} scaling of semi-hard processes in QCD	Phys.Lett.B561: 93, 2003
D.Kharzeev, E.Levin, M.N.	QCD saturation and deuteron-nucleus collisions	Nucl.Phys.A73: 448, 2004 + Errata Corr.
D.Kharzeev, E.Levin, M.N.	Color Glass Condensate at the LHC: hadron multiplicity in pp,pA and AA coll.	hep-ph/0408050

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll.