ALICE Performance

Physics motivation Experimental conditions Physics performance

Physics Reach and Performance of ALICE K.Safarik

LHC Energy

For A-A collisions:

 $\begin{array}{ll} {\sf E}_{cms} &= 5500 \; A \; GeV \\ {\sf E}_{lab} &= {\sf E}_{cms}{}^2 \, / \, (2A \; m_N) = 1.6 \times 10^7 \; A \; GeV \\ \mbox{for lead ions } {\sf E}_{lab \; Pb-Pb} &= 3.3 \times 10^9 \; GeV = 3.3 \times 10^{12} \; MeV = 0.5 \; kg \times 10 \; cm \; g \end{array}$

And for pp collisions:

 $E_{lab pp(14TeV)} = 70 g \times 2 cm g$

For those who don't like to be seated on a lead ion (and to fly inside LHC vacuum pipe) $E_{cms Pb-Pb} = 5500 A GeV = 1.14 \times 10^9 MeV = 1 g \times 2 cm g$

Still, macroscopic energy !!! (one can actually hear it)

But the size of ions is by factor more than 10⁻¹² smaller

What multiplicity do we expect? old estimates: dN_{ch}/dy = 2000 – 8000, now we can extrapolate from RHIC data

- Still no safe way to extrapolate
 - shadowing/saturation (might decrease charged multiplicity)
 - jet quenching (might increase it dramatically)
 - A-scaling (importance soft vs. hard changes with energy)
- ALICE optimized for dN_{ch}/dy = 4000
- Checked up to 8000 (reality factor 2)

(from K.Kajantie, K.Eskola)

ALICE Physics Program

(has to cover in one experiment what at the SPS was covered by 6-7 experiments, and at RHIC by 4!!)

- Global observables:
 - multiplicities, η distributions
- Degrees of freedom as a function of T:
 - hadron ratios and spectra
 - dilepton continuum, direct photons
- Geometry of the emitting source:
 HBT, impact parameter via zero-degree energy

Early state manifestation of collective effects:
 elliptic flow

ALICE Physics Program

- Deconfinement:
 - charmonium and bottomium spectroscopy
- Energy loss of partons in quark gluon plasma:
 - jet quenching high pt spectra
 - open charm and open beauty
- Chiral symmetry restoration:
 - neutral to charged ratios
 - resonance decays
- Fluctuation phenomena critical behavior:
 - event-by-event particle composition and spectra
- pp collisions in a new energy domain

ALICE detector acceptance

Muon arm2.4<η<4</th>PMD2.3<η<3.5</td>FMD-5.4<η<-1.6, 1.6<η<3</td>

ALICE LAYOUT: TRACKING

(and event characterization)

... what about this!

0

Alice event: 0, Run:0 icles = 36276 Nhits = 1943104

LICE Pb-Pb central event N_{ch}(-0.5<η<0.5)=8000

1.3

0.

Tracking performance

Tracking-II: Momentum resolution

resolution ~ 9% at 100 GeV/c excellent performance in hard region!

ALICE LAYOUT: PID

ALICE PID

π, K, p identified in large acceptance (2π * 1.8 units η) via a combination of dE/dx in Si and TPC and TOF from ~100 MeV to 2 (p/K) - 3.5 (K/p) GeV/c
Electrons identified from 100 MeV/c to 100 GeV/c (with varying efficiency) combining Si+TPC+TOF with a dedicated TRD
In small acceptance HMPID extends PID to ~5 GeV
Photons measured with high resolution in PHOS, counting in PMD, and in EMC

Under study: extension of PID to even higher momenta

• Combine TPC and TRD dE/dx capabilities (similar number of samples/track) to get statistical ID in the relativistic rise region

PID combined over ITS, TPC and TOF (Kaons)

Efficiency of the combined PID is higher and the contamination is lower than the ones given by any of the detectors stand-alone

Example : Particle spectra

Preliminary

Needs corrections for decays, tracking and PID efficiency

Example: A analysis

(290 events from the jet production) Fitted with p0*exp(-0.5*(x-p1)*(x-p1)/p2) + p3Mass=p1=1115 MeV $\sigma=\sqrt{p1=1.3}$ MeV

A Reconstruction with pt dependent geometrical cuts

Parton Energy Loss

• Effects:

Reduction of single inclusive high p_t particles
 Parton specific (stronger for gluons than quarks)
 Flavour specific (stronger for light quarks)
 Measure identified hadrons (π, K, p, Λ, etc.) + partons (charm, beauty) at high p_t

Suppression of mini-jets
 same-side / away-side correlations

Change of fragmentation function for hard jets (*p*t >> 10 GeV/c)
 Transverse and longitudinal fragmentation function of jets
 Jet broadening → reduction of jet energy, dijets, γ-jet pairs

•p+p and p+A measurements crucial

•Heavy quarks with momenta < 20–30 GeV/c \rightarrow v << c

Contributes to the harder fragmentation of heavy quarks

•Yu.L.Dokshitzer and D.E.Kharzeev: dead cone implies lower energy loss

D mesons quenching reduced
 Ratio D/hadrons (or D/π⁰) enhanced and sensitive to medium properties

Yu.L.Dokshitzer and D.E.Kharzeev, Phys. Lett. B519 (2001) 199 [arXiv:hep-ph/0106202].

•STRATEGY: invariant mass analysis of fully-reconstructed topologies originating from (displaced) secondary vertices

- Measurement of Impact Parameters
- Measurement of Momenta

Particle identification to tag the two decay products

Track reconstruction in TPC-ITS d₀ measurement

Measurement of impact parameters is *crucial* for secondary vertex reconstruction

Hadronic charm

Combine ALICE tracking + secondary vertex finding capabilities (σ_{d0} ~60µm@1GeV/c p_T) + large acceptance PID to detect processes as D⁰→K⁻π⁺ ~1 in acceptance / central event ~0.001/central event accepted after rec. and all cuts

'High' *p*_t (6–15 GeV/*c*) here energy loss can be studied (it's the only expected effect)

Reduced

Ratio D/hadrons (or D/π⁰) enhanced and sensitive to medium properties

Jet reconstruction

Jets are produced copiously

50 – 100 GeV jets in Pb–Pb

At large enough jet energy – jet clearly visible But still large fluctuation in underlying energy

Central Pb–Pb event (HIJING simulation) with 100 GeV di-jet (PYTHIA simulation)

Energy fluctuation in UE

Mean energy in a cone of radius R coming from underlying event

Fluctuation of energy from an underlying event in a cone of radius R

It's impossible to know jet energy better than 22 – 30% (for 100 GeV jets)

⇒ we are now at 30 %, pretty close...

Jet energy resolution using charged particles

Charged/neutral fluctuations dominate:

∆E/E > 50%

units] Input spectrum for given interval Rate [arb. 10 E of reconstructed energy. Cone-size: R = 0.3, $p_T > 2$ GeV 30-3 Jate 10⁻¹ 10⁻² 20 60 40 80 100 120 140 160 180 200 Û Jet Energy [GeV]

(R<1 = parton energy)

Ø

Proposed ALICE EMCAL

•EM Sampling Calorimeter (STAR Design) •Pb-scintillator linear response

- -0.7 < η < 0.7
- $\pi/3 < \Phi < \pi$
- 12 super-modules
- 19152 towers
- Energy resolution ~15%/√E

Improved jet-energy resolution

Trigger for high-energy jets

Larger acceptance for high-p_t γ

EMCAL Directional and Energy Resolution

•Modified UA1 cone algorithm

Uses combination of tracking and calorimeter information

- •Cone Radius: R = 0.3, Seed 4.6 GeV, Minimum Jet energy 14 GeV
- •Background HIJING PbPb *b* = 0-5 fm

Jet quenching

Excellent jet reconstruction... but challenging to measure medium modification of its shape...

Medium induced redistribution of jet energy occurs inside cone

C.A. Salgado, U.A. Wiedemann hep-ph/0310079

- E_t=100 GeV (reduced average jet energy fraction inside R):
 - ⇒ Radiated energy ~20%
 - R=0.3 ∆E/E=3%
 - \Rightarrow E_t^{UE} ~ 100 GeV

Look also for transverse fragmentation function (k_t)

Fraction of energy inside cone all particles – and low p_t

Cone Fluctuations (90 GeV<E_T<130 GeV)

pp physics

- All of previously mentioned observables have to be measured also in pp collisions for comparison with heavy-ion results
- However, there are interesting questions regarding pp collisions themselves, for example
 - charged multiplicity distribution
 - ⇒ correlations between mean p_t and multiplicity or strangeness
 - study of diffractive events with large rapidity gaps
 - ⇒ jet physics
 - ⇒...
- ALICE advantages w.r.t.
 other pp detectors
 i0
 ⇒ lower p_t cut-off
 ⇒ particle identification
 (see ALICE Note: P.Giubellino, K.S. et al.: Day One...)

 $\begin{array}{c}
\mathbf{P}_{T} \\
\mathbf{GeV} \\
\mathbf{100} \\
\mathbf{10} \\
\mathbf{10} \\
\mathbf{1} \\
\mathbf{ATLAS} \\
\mathbf{ALICE} \\
\mathbf{0.1} \\
\mathbf{-4} \\
\mathbf{-2} \\
\mathbf{0} \\
\mathbf{2} \\
\mathbf{4} \\
\mathbf{n}
\end{array}$

Who carry baryon number

- Standard point of view

 - gluons have zero baryon charge
- Baryon number is carried by quarks, not by gluons

It is not obvious

baryon number can be transferred by specific configuration of gluon field

Exchange in t-channel

Exchange of spin 1/2 (quark) ∞ exp (-1/2 ∆y) (~ s^{-1/2})

strong damping with rapidity interval (i.e. for annihilation with energy)

This exchanged is suppressed

Exchange of spin 1 (gluon)
 ∞ const.
 ⇒ no damping at all

This exchange is not

•Q: what is actually exchanged ?

Central region at LHC

Statistics needed

For proton – antiproton one needs precision ~ 1%

- ⇒ the effect is about 7%, compare to 3 % in 'normal' case
- using ALICE acceptance, efficiency etc. this needs few times 10⁴ minimum bias pp events, i.e. something like first 100 sec of running
- Larger effect expected for strange particle, Lambda anti-Lambda about 15%
- ⇒ for this few times 10⁵ events will do
- For Omega anti-Omega a huge effect is expected (under some assumptions even 100%)
 - ⇒ 100 Omegas would be enough for that order of 10⁷ events
 - ⇒ a 'good day' of running will do it all

ALICE is open for new ideas

