

The TOF detector of the ALICE experiment

E. Scapparone, INFN-Bo

for the ALICE-TOF Group, Seoul, October 9, 2004

- The role of the TOF in ALICE;
- Detector choice and performance;
- The front end electronics;
- Read out electronics;
- Irradiation results;
- Module "0" construction;
- Starting MRPC massive production

ALICE TOF is a Italian-Russian-Korean collaboration led by A. Zichichi

- University and INFN of Bologna (Italy);
- University and INFN of Salerno (Italy);
- ITEP Moscow (Russia);
- University of Kangnung (South Korea);

About 50 physicists.

Eugenio Scapparone

Eugenio Scapparone

The TOF detector of the ALICE experiment

Time difference = $f(L,p,m_1,m_2)$

$$\Delta t_{1-2} = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2} \right) = \frac{L}{c} \left(\sqrt{1 + m_1^2 c^2 / p^2} - \sqrt{1 + m_2^2 c^2 / p^2} \right) \approx \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$

Time difference at 3.7 m Time difference [ps] 600 500 π/K separation 400 K/p separation 300 200 100 0 0 2 3 5 6 7 4 Momentum [GeV/c]

For example if time resolution of TOF is 100 ps 3 σ separation equivalent to 300 ps difference

$$\pi$$
/K up to 2.2 GeV/c

The TOF detector of the ALICE experiment

K/p up to 3.8 GeV/c

What is needed?

- 100 ps time resolution;
- Large array to cover whole ALICE barrel $\sim 160 \text{ m}^2$;
- Highly segmented 160,000 channels of size (2.5 x 3.5) cm².

GASEOUS DETECTOR IS THE ONLY CHOICE

Eugenio Scapparone

The TOF detector of the ALICE experiment

Cross section of double-stack MRPC

Specifications

250 micron gaps with spacers made from nylon fishing line

Resistive plates 'off-the-shelf' soda lime glass

400 micron internal glass 550 micron external glass

Resistive coating $5 \text{ M}\Omega$ /square

Eugenio Scapparone

Timing depends on individual gap; Efficiency depends on total gas gap (10x250 μm)

Eugenio Scapparone

Eugenio Scapparone

The TOF detector of the ALICE experiment

Eugenio Scapparone

The TOF detector of the ALICE experiment

Front end Electronics

Good results obtained with a FEC made of discrete components (Ampli Maxim 3760, Comparator Maxim 9691):

Test beam October 2002, 152 pads analyzed:

 $<\epsilon>=(99.60 \pm 0.05)$

 $<\sigma_t> = (63 \pm 1) \text{ ps}$

Maxim based FEC lacks:

- Dissipated power: 400 mW/ch;
- Mounting on the FECs of an high number of components;
- Non ideal choice: (non differential input signal, input capacitance not fully matched, etc.)

New Front End Card ASIC based $(0.25 \ \mu m \ CMOS)$

Main advantages

- Input stage (and following) fully differential;
- Adjustable input resistance ($30 \Omega 100 \Omega$);
- Power: 40 mW/channels (to be compared with 400 mW/channels of the Maxim based FEC);
- Nice matching with detector capacitance (30 pF);
- -LVDS Output signal, compatible with HPTDC input (no ECL-LVDS conversion required).

Eugenio Scapparone

Test beam October 2003

ASIC chips (8 channels/chip)

Eugenio Scapparone

The TOF detector of the ALICE experiment

ASIC: Timing improved in the low pulse region (short duration); time-slewing correction easier

Pulse width appropriate for T-S correction

Eugenio Scapparone

The TOF detector of the ALICE experiment

October 2003 test beam with NINO ASIC

Time resolution: <u>40 - 50 ps</u> between 11.5 and 13 kV

MODULE "0" CONSTRUCTION..

The TOF detector of the ALICE experiment

Test beam, (October 2003)

No difference in performance observed when strips inserted in module 0

Eugenio Scapparone

The TOF detector of the ALICE experiment

MECHANICS: MODULES MOUNTING

Eugenio Scapparone

The TOF detector of the ALICE experiment

TOF CRATES

19 TRM (TDC readout module) 2 DRM (Data Readout Manager) 2 LTM (Local Trigger and Module) 1 CPM Clock and

Pulser Module

Eugenio Scapparone

The TOF detector of the ALICE experiment

Final TRM layout

- -19 TRM cards housed in two crates at the side of the sector;
- Each TRM made of 1 central PCB for the FPGAs, SRAM and FIFO (master).
- 5 "piggyback" cards(slaves) <u>per side</u>, each with 3 HPTDC chips (match with FEA, easy mounting).

Eugenio Scapparone

36 pads/ASIC channels/HPTDC channels tested

Eugenio Scapparone

LOCAL TRIGGER MODULE

First LTM prototype, 6 channels version, tested at T10 on July 2004.

-<u>Preparation of the trigger signal</u> (latch of FEA Or signals).

- Slow controls:
- FEA Low Voltage Monitor;
- Temperature on the Module;
- Thresholds to the FEA.

October 9, 2004

LTM TRIGGER TEST

ORs signals are made ORing 24 pads = 210 cm^2 area. At PS-T10, scintillators p1*p2*p3*p4 select a 1 cm² area, fully contained within the 210 cm² area (p1*p2 upstream , p3*p4 downstream).

We expect <u>at any p1,p2,p3,p4 coincidence trigger</u>, a LTM trigger too.

July 04 test beam: 100 % LTM trigger efficiency compared to T10 scintillator coincidence

Eugenio Scapparone

The TOF detector of the ALICE experiment

Eugenio Scapparone

The TOF detector of the ALICE experiment

Strips previously exposed at GIF were analyzed at PS-T10 in October.

Eugenio Scapparone

Chemical analysis (Chromatography) of the outgoing gas from both MRPCs (CH1, CH2) by CERN EST/SM-CP : measured concentration of Fluorine under the limit of detection (0.02 **ppm**), I.e. <u>no trace of HF in the samples</u>

- Active detector volume is 2% of the total volume of the gas box;
- Diffusion for the gas exchange between strip and the surrounding gas.
- No sign of degradation;
- No increase of dark current;
- No degradation in efficiency;
- No degradation in time resolution;

- Massive production: <u>~ 2000 strips</u>.

Development of methods to automate as much as possible the strip production (construction speed, human error reduction, quality controls);

Quality tests:

- Glass resistivity checks;
- Gaps uniformity with microscope + CCD;
- HV test in air;
- Pulser test;
- HV test in gas;
- Cosmic ray tests;

About 30 m fishing line/strip. Wiring machine, PC controlled.

Eugenio Scapparone

The TOF detector of the ALICE experiment

About 1600 soldering/strip

Eugenio Scapparone

The TOF detector of the ALICE experiment

c) Microscope + CCD to check gap width uniformity

Eugenio Scapparone

The TOF detector of the ALICE experiment

FLATRON 775FT

Eugenio Scapparone

The TOF detector of the ALICE experiment

October 9, 2004

CONCLUSIONS

- After many years of R&D, the MRPC reached a time resolution better than 50 ps, efficiency > 99.9%;
- Asic Front End Card improved the time resolution and decreased the power consumption;
- Read out electronics in well advanced state;
- No sign of degradation after irradiation;
- Module "0" successfully constructed and tested;
- MRPC massive production just started.