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Heavy Ions @ LHC 

⚫ Heavy Ion Physics
 (in VERY general terms) 

⚫Heavy Ion Physics at LHC

⚫ ALICE
 Collaboration

 Detector

 Performance
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Pretty Messy …

NA35 streamer chamber picture, ca 1990
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The QCD Phase transition

⚫ QGP = true ground state of QCD

 I) melting matter => deconfinement

 II) melting vaccum (gluon condensate)
=>chiral symmetry restoration

 dynamical origin of constituent mass

⚫ Phase transitions involving    
elementary quantum fields

 phase transitions and spontaneous 
symmetry breaking central to HEP

 QCD transition is the only one 
accessible dynamically

⚫ Cosmology & Astrophysics

 early Universe at ~ 1 ms

 interior of neutron stars

⚫ new domain of hot & dense QCD

 surprises ?
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Melting Matter
(deconfinement)
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⚫ Elementary Particles 0.1%

 12 matter particles (quarks, leptons)

 only 4 relevant today (u, d, e, n)

 13 force particles (3 massive, 10 massless)

⚫ Composite Particles (hadrons) 4%

 hundreds…

 only 2 are relevant (p,n), making nuclei

 luminous normal matter (stars, galaxies)  0.05%

 dark normal matter (gas, planets, ..) 3.95%

What stuff is the Universe made of ??

We don’t know how and why for ~ 5%

We don’t even know what for the other 95%

⚫ Dark Matter 23%

 made of unknown particles

⚫ Dark Energy 73%

 vacuum energy

 of completely unknown origin

 should be infinite or exactly 0

The Dark Mystery of Mass 
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Physics at LHC
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The Relativistic Heavy Ion Collider

Current hunting ground for

Quark Gluon Plasma
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The Large Hadron  Collider

Future place for studying the

Quark Gluon Plasma
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LHC Status

⚫ long & winding road to LHC
 first discussion on HI in LHC: 1990

 LHC approved 1994 /1996

 start-up several times postponed

⚫ financial problems
 some 20% cost overrun (~800 MCHF)

⚫ technical problems
 Cryoline installation late > 1 year

⚫ machine well into construction
 > 1/3 of magnets produced

⚫ LHC start-up still expected in 2007

 first heavy ion run in 2008
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LHC Magnets

Main Dipole

Transfer Lines

MQW

Insertion (Japan)
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Heavy Ions in LHC
⚫ energy
 Ebeam = 7 x Z/A [TeV]

 s = 5.5 TeV/A (Pb-Pb), 14 TeV (pp)

⚫ beams
 possible combinations: pp, pA, AA

 constant magnetic rigidity/beam ('single magnet')

 expected heavy ion running

 ~ 6 weeks heavy ion runs, typically after pp running (like at SPS)

 initial emphasis on Pb-Pb

 pp and pA comparison runs

 intermediate mass ion (eg Ar-Ar) to vary energy density

 later options: different ion species, lower energy AA and pp

⚫ luminosity 
Pb-Pb Ar-Ar pp

L [cm
-2

s
-1

] 10
27

3x10
27 

to 10
29

10
29

 to 3x10
30

Rate [kHz] 8 8 to 250 7 to 200
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H.I. Physics@LHC: Caveat

⚫ long distance QCD is difficult to predict
 Theory well known, not so its consequences or manifestation

 HEP@LHC: Theory unknown, but each candidate makes precise predictions

⚫ the fate of 'expectations' at SPS and RHIC
 some expectations turned out right:

 SPS: strangeness enhancement RHIC: particle ratios, jet-quenching

 some turned out wrong:

 SPS: large E-by-E fluctuations RHIC: multiplicity dN/dy

 a number of unexpected surprises:

 SPS: J/Psi suppression RHIC: elliptic flow, 'HBT-puzzle'

⚫ lesson when preparing ALICE at LHC
 guided by theory and expectations, but stay open minded !

⚫ 'conventional wisdom'
 soft physics: smooth extrapolation of SPS/RHIC necessary, but boring ???

 hard physics: new domain at LHC

Predictions are notoriously difficult, 
in particular if they concern the future..

BIG Step ahead: SPS RHIC LHCx 28x 12
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X 2000

Hard Processes at the LHC

⚫ Main novelty of the LHC: large hard cross section
~2% at SPS

~50% at RHIC

~98% at LHC

⚫ Hard processes are extremely useful tools
 happen at t = 0 (initial stage of the collision)

 have large virtuality Q and small “formation time” Dt  1/Q

 probe matter at very early times (QGP) !!!

hard processes can be calculated by pQCD  → predicted

tothard  /
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Jets in ALICE |h|<0.9

Reasonable 

rate up to ET

~300 GeV

2.8 104

1.2 105

8.1 105

1.5 107

4.9 1010

accepted 
jets/month

1.1 10-4200

4.8 10-4150

3.5 10-3100

7.7 10-250

3.5 1025

jets/eventpt jet >

(GeV/c)

Pb Pb rates:

pp

L = 1030cm-2s-1

⚫ ideal energy for jet-quenching:
around 100 GeV

 pQCD applicable

 jets measurable above soft background

 energy loss still relatively large effect 

 DE/E  ~ O(10%), decreasing with E !
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Heavy Quarks & Quarkonia

⚫ copious heavy quark production
 charm @ LHC ~ strange @ SPS

 hard production => 'tracer' of 
QGP dynamics (statistical hardonization ?)

 2 mc ~ saturation scale => change in production ?

 jet-quenching with heavy quarks visible in inclusive spectra ?

⚫ Y d/dy LHC ~ 20 x RHIC
 Y will probably need 
higher Lumi at RHIC

 even at LHC Y'' is difficult 

Y production

RHIC LHC

R. Vogt, hep-ph/0205330 
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Initial Conditions

<0.2~0.5~1t0 (fm/c)

4-101.5-4.0<1tQGP (fm/c)

2x104(?)7x103103Vf(fm
3)

15-403.5-7.52.5e (GeV/fm3)t0=1fm

2-8  x103700-1500430dNch/dy

550020017s1/2(GeV) 

LHCRHICSPSCentral collisions

⚫ my pre-RHIC guess (QM2001)
 still expect conditions to be significantly different

 only LHC will give the final answer on dn/dy!

Significant gain in e, V, t

 x 10 SPS -> LHC

 x 3-5 RHIC -> LHC



Korea 2004  J. Schukraft
17

The Soft Stuff

⚫ changes in expansion dynamics & freeze-out ARE expected
 thermal freeze-out temperature ?

 how will charm fit into particle ratios ?

 Event-by-Event fluctuations ?

 measurement accuracy ~ #particles

 will elliptic flow continue to rise ?

 will the measured transverse HBT 
volume (finally) increase ?

Biggest surprise 
would be none..

Freeze-out Hyper surface

SPS LHC
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ALICE Set-up

HMPID

Muon Arm

TRD

PHOS

PMD

ITS

TOF

TPC

Size: 16 x 26 m

Weight: ~10,000 tons
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FMD  -5.4 < h < -1.6

PMD  -2.3 < h < -3.5

FMD  1.6 < h < 3

Muon arm  2.4 < h < 4

ITS+TPC+TRD+TOF: 

 -0.9 < h < 0.9

ITS multiplicity  -2 < h < 2

HMPID 

-.45 < h < 0.45

D = 

PHOS 

-.12 < h < 0.12

D = 

ALICE Acceptance

⚫ central barrel -0.9 < h < 0.9

 tracking, PID

 single arm RICH (HMPID)

 single arm em. calo (PHOS)

⚫ forward muon arm 2.4 < h < 4

 absorber, dipole magnet
tracking & trigger chambers

⚫ multiplicity -5.4 < h < 3

 including photon counting in PMD

⚫ trigger & timing dets

 Zero Degree Calorimeters

 T0: ring of quartz window PMT's

 V0: ring of  scint. Paddles
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ALICE Collaboration

UK
PORTUGAL

JINR

GERMANY

SWEDEN
CZECH REP.

HUNGARYNORWAY
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~ 1000 Members 

(63% from CERN MS)

~30 Countries

~80 Institutes
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ALICE 

Collaboration statistics

LoI
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ALICE Design Philosophy

⚫ General Purpose Heavy Ion Detector
 one single dedicated HI expt at LHC

 ATLAS/CMS will contribute, but priority is pp physics

 AGS/SPS: several (6-8) 'special purpose expts'

 RHIC: 2 large multipurpose + 2 small special purpose expts

⚫ cover essentially all known observables of interest
 comprehensive study of hadrons at midrapidity

 large acceptance, excellent tracking and PID

 state-of-the-art measurement of direct photons

 excellent resolution & granularity EM calo (small but performing !)

 dedicated & complementary systems for di-electrons and di-muons

 cover the complete spectrum: from soft (10's of MeV) to hard (100's of GeV)

⚫ stay open for changes & surprises
 high throughput DAQ system + powerful online intelligence ('PC farm‘, HLT)

 flexible & scalable: minimum design prejudice on what will be most interesting
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The ALICE
Magnet:  

ready for the experiment to move in!

⚫ still largest magnet
 magnet volume: 12 m long, 12 m high

 0.5 T solenoidal field

http://images.google.com/imgres?imgurl=www.th.physik.uni-frankfurt.de/~jr/gif/phys/ting.jpg&imgrefurl=http://www.th.physik.uni-frankfurt.de/~jr/physlist.html&h=480&w=360&prev=/images%3Fq%3Dting%26svnum%3D20%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26newwindow%3D1%26sa%3DN
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ALICE R&D

⚫ Inner Tracking System (ITS)

 Silicon Pixels (RD19)

 Silicon Drift (INFN/SDI)

 Silicon Strips (double sided)

 low mass, high density  interconnects

 low mass support/cooling

⚫ TPC 

 gas mixtures (RD32)

 new r/o plane structures

 advanced digital electronics

 low mass field cage

⚫ em calorimeter

 new scint. crystals (RD18)

⚫ PID

 Pestov Spark counters

 Parallel Plate Chambers

 Multigap RPC's (LAA)

 low cost PM's

 solid photocathode RICH (RD26)

⚫ DAQ & Computing

 scalable architectures with COTS

 high perf. storage media

 GRID computing

⚫ misc

 micro-channel plates

 rad hard quartz fiber calo.

 VLSI electronics

1990-1996:Strong, well organized, well funded R&D activity

• R&D made effective use of long (frustrating) wait for LHC

• was vital for all LHC experiments to meet LHC challenge !

V

V

V

V

V

✓

✓

✓

✓

✓

✓

✓

?

?

?
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Time of Flight Detectors
⚫ aim: state-of-the-art TOF at ~1/10 current price ! 
 requirements: area > 150 m2, channels ~ 150,000, resolution  < 100 ps

 existing solution: scintillator + PM, cost > 120 MSF !

 R&D on cheaper fast PM's in Russia failed to deliver

⚫ gas TOF counters + VLSI FEE
 Pestov Spark Counter (PSC)

 100 mm gap, > 5 kV HV, 12 bar, sophisticated gas

  < 50 ps, some 'tails' (?), but only (!) ~ 1/5 cost

 technology & materials VERY challenging

 Parallel Plate Chamber (PPC)

 1.2 mm gap, 1 bar, simple gas & materials

 1/10 cost, but only  = 250 ps

 unstable operation, small signal

 Multigap Resistive Plate Chambers (MRPC)

 breakthrough end 1998 after > 5 years of R&D !

 many small gaps (10x250 mm), 1 bar, simple gas & materials

 ~ 1/10 cost,  < 100 ps , simple construction & operation,..
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Inner Tracking System (ITS)

⚫ 6 Layers, three technologies (keep occupancy ~constant ~2% for max mult)

 Silicon Pixels (0.2 m2, 9.8 Mchannels)

 Silicon Drift (1.3 m2, 133 kchannels) 

 Double-sided Strip (4.9 m2, 2.6 Mchannels)

Rout=43.6  cm

Lout=97.6 cm

SPD

SSD

SDD

Major 

technological 

challenge!Material Budget: < 1% X0 per layer !
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ITS Electronics Developments
(all full-custom designs in rad. tol., 0.25 mm process)

P
re

am
p

li
fi

er
s

Analogue

memory

A
D

C
s

ALICE PIXEL CHIP

50 µm x 425 µm pixels

8192 cells

Area: 12.8 x 13.6 mm2

13 million transistors

~100 µW/channel

ALICE SDD FEE
Pascal chip:
64 channel preamp+ 256-deep 
analogue memory+ ADC 
Ambra chip:
64 channel             
derandomizer                       
chip

ALICE SSD FEE
HAL25 chip:
128 channels
Preamp+s/h+    
serial out

And extreme lightweight interconnection techniques:

SSD tab-bondable 

Al hybrids



28 System testing and series production

Pixel ladder
Strip module

assembly

Drift cooling system
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Tracking Challenge

STAR

NA49 
ALICE 'worst case' scenario:

dN/dych = 8000
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25 µm  aluminized Mylar on Al frame

Central Electrode Prototype

~ 3 m diameter

drift gas
90% Ne - 10%CO2

Field Cage    Inner Vessel

TPC

⚫ largest ever
 88 m3, 570 k channels
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TPC Field Cage
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TPC R/O chambers

⚫ production finished in 
Bratislava and GSI
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for photons, neutral mesons 

and -jet tagging

PbW04: Very dense: X0 < 0.9 cm

Good energy resolution (after 6 years R&D):

stochastic   2.7%/E1/2

noise           2.5%/E

constant     1.3%

Photon Spectrometer

PbW04 crystal

⚫ single arm em calorimeter

 dense, high granularity crystals

 novel material:  PbW04

 ~ 18 k channels, ~ 8 m2

 cooled to -25o



Korea 2004  J. Schukraft
35

Dimuon Spectrometer

⚫ Study the production of the J/Y, Y', U, U' and 
U'’ decaying in 2 muons, 2.4 <h < 4

⚫ Resolution of 70 MeV at the J/Y and 100 MeV 
at the U

Dipole Magnet:  bending power 3Tm

Complex absorber/small 

angle shield system to 

minimize background

(90 cm from vertex)

RPC Trigger Chambers

5 stations of high 

granularity 

pad tracking chambers,  

over 800k channels
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Muon Chambers Station 3-4: Slats

Trigger RPC

Station 1&2: Quadrants
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Muon Magnet
⚫ Dipole Magnet 

 0.7 T and 3 Tm

 4 MW power, 800 tons

 World’s largest warm dipole
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ALICE DC III

Computing Phase Transition

⚫ Online: storing up to 1.2 Gbyte/s

 whole WWW in few hours on tape !

 ~ 10 x RHIC !

⚫ Offline: 18  MegaSI2000

 100,000 PC's in 2000 (500 Mhz)

 ~ 100 x RHIC !!

The Problem:

The Answer:

cheap mass market components

Industry & Moore's law

The Challenge:

make 100,000 mice do the 

work of one elephant

new computing paradigm: 

The GRID
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Data Challenges
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M.S. bw milestone

M.S. bw achieved

MByte/s

reduced number of components (PC’s etc.) available in 2003

reliability of new equipment imperfect
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Yerevan

CERN

Saclay

Lyon

Dubna

Capetown, ZA

Birmingham

Cagliari

NIKHEF

GSI

Catania

Bologna
Torino

Padova

IRB

Kolkata, India

OSU/OSC

LBL/NERSC

Merida

Bari

⚫ The CORE GRID functionality exists

⚫ Distributed  production working, distributed analysis to be done...

ALICE GRID is there: ALIEN
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Past-Present-Future

•

RHIC

LHC: will open the next chapter in HI physics

significant step over &  above existing facilities

THE place to do frontline research after 2007

⚫ AGS/SPS: 1986 – 1994
 existence & properties of hadronic phase

 chemical & thermal freeze-out, collective flow,…

⚫ SPS: 1994 – 2003
 ‘compelling evidence for new state of matter
with many properties predicted for QGP’

 J/Y suppression (deconfinement ?)

 low mass lepton pairs (chiral restoration ?)

⚫ RHIC: 2000 - ?
 compelling evidence -> establishing the QGP ?

 parton flow, parton energy loss

 however: soft ~ semihard; lifetime hadron ~ parton phase 

⚫ LHC: 2007 - ??
 (semi)hard >> soft, lifetime parton >> hadron phase

 precision spectroscopy of ‘ideal plasma ‘QGP

 heavy quarks (c,b), Jets, Y, thermal photons
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Summary

⚫ LHC is the ultimate machine for Heavy Ion Collisions
 very significant step beyond RHIC

 excellent conditions for experiment & theory (QCD)

 not only latest, but possibly last HIC at the energy frontier

⚫ ALICE is a powerful next generation detector
 first truly general purpose HI experiment

 addresses most relevant observables: from super-soft to ultra-hard

 many evolutionary developments

 SSD, SDD, TPC, em cal, …

 some big advances in technology

 electronics, pixels, TOF, computing

Heavy Ion Community can look forward to

eventually

exploit this unique combination !


