Heavy Ions @ LHC

Heavy Ion Physics

⇒ (in VERY general terms)

Heavy Ion Physics at LHC

ALICE

- Collaboration
- ⇒ Detector
- ⇒ Performance

Pretty Messy ...

The QCD Phase transition

QCD prediction:

increase of $\varepsilon \Rightarrow$ new phase of matter

Quark-Gluon-Plasma ε > 1-2 GeV/fm³ T> 150 MeV p = 5 - 10p(nucleus) g's are deconfined colour conductivity g's have small 'bare' mass chiral symmetry restored m, ≈m, ≈5 MeV m, ≈150 MeV

- **QGP** = true ground state of **QCD** ⇒ I) melting matter => deconfinement
 - ⇒ II) melting vaccum (gluon condensate) =>chiral symmetry restoration
 - o dynamical origin of constituent mass
- Phase transitions involving elementary quantum fields
- phase transitions and spontaneous symmetry breaking central to HEP
- ➡ QCD transition is the only one accessible dynamically

Cosmology & Astrophysics

- \Rightarrow early **Universe** at ~ 1 µs
- ⇒ interior of neutron stars
- new domain of hot & dense QCD ⇒ surprises ?

The Dark Mystery of Mass

What stuff is the Universe made of ??

Elementary Particles

⇒ 12 matter particles (quarks, leptons)
 only 4 relevant today (u, d, e, v)

⇒ 13 force particles (3 massive, 10 massless)

Composite Particles (hadrons) 4%

⇒ hundreds…

c) only 2 are relevant (p,n), making nuclei
 ⇒ luminous normal matter (stars, galaxies) 0.05%
 ⇒ dark normal matter (gas, planets, ..) 3.95%

- **0.1% Dark Matter 23%**
 - ⇒ made of unknown particles
 - Dark Energy 73%

⇒ vacuum energy

- of completely unknown origin
- ⇒ should be infinite or exactly 0

We don't know <u>how</u> and <u>why</u> for ~ 5% We don't even know <u>what</u> for the other 95%

Common Questions

generation of mass

- ☆ elementary particles => Higgs
- 🚖 composite particles => QGP

=> ATLAS/CMS => ALICE

missing symmetries

- SuperSymmetry: matter <-> forces => ATLAS/CM
- Chiral Symmetry: mass of light quarks => ALICE
- ☆ CP Symmetry: matter <-> antimatter => LHC-B

л

Different Approaches

Concentrated Energy

=> (single) high mass particles

Distributed Energy'

=> interaction between matter & vacuum

'Borrowed Energy'

=> indirect effects of very high mass particles

Current hunting ground for Quark Gluon Plasma

The Relativistic Heavy Ion Collider

Future place for studying the Quark Gluon Plasma

The Large Hadron Collider

LHC Status

Iong & winding road to LHC

- ⇒ first discussion on HI in LHC: 1990
- ⇒ LHC approved 1994 /1996
- ⇒ start-up several times postponed

financial problems

⇒ some 20% cost overrun (~800 MCHF)

technical problems

⇒ Cryoline installation late > 1 year

machine well into construction

 \Rightarrow > 1/3 of magnets produced

• LHC start-up still expected in 2007

⇒ first heavy ion run in 2008

Updated 31 Aug 2004

Data provided by P. Lienard AT-MAS

LHC Magnets

Heavy lons in LHC

beams

- ⇒ possible combinations: pp, pA, AA
 - constant magnetic rigidity/beam ('single magnet')
- ⇒ expected heavy ion running

 - initial emphasis on Pb-Pb
 - o pp and pA comparison runs
 - intermediate mass ion (eg Ar-Ar) to vary energy density
- ⇒ later options: different ion species, lower energy AA and pp

luminosity

	Pb-Pb	Ar-Ar	рр
L [cm ⁻² s ⁻¹]	10 ²⁷	3x10 ²⁷ to 10 ²⁹	10 ²⁹ to 3x10 ³⁰
Rate [kHz]	8	8 to 250	7 to 200

BIG Step ahead: SPS x 12 RHIC x 28 LHC

Iong distance QCD is difficult to predict

Predictions are notoriously difficult, in particular if they concern the future...

Theory well known, not so its consequences or manifestation
 HEP@LHC: Theory unknown, but each candidate makes precise predictions

the fate of 'expectations' at SPS and RHIC

- ⇒ some expectations turned out right:
 - SPS: strangeness enhancement
- ⇒ some turned out wrong:
 - SPS: large E-by-E fluctuations
- ⇒ a number of <u>unexpected</u> surprises:
 - SPS: J/Psi suppression

RHIC: particle ratios, jet-quenching

RHIC: multiplicity dN/dy

RHIC: elliptic flow, 'HBT-puzzle'

Iesson when preparing ALICE at LHC

guided by theory and expectations, but stay open minded !

'conventional wisdom'

- ⇒ soft physics: smooth extrapolation of SPS/RHIC
- ⇒ <u>hard physics</u>: new domain at LHC

necessary, but boring ???

Main novelty of the LHC: large hard cross section

- ⇒ happen at t = 0 (initial stage of the collision)
- \Rightarrow have large virtuality Q and small "formation time" $\Delta t \propto 1/Q$

⇒ probe matter at very early times (QGP) !!!

hard processes can be calculated by pQCD \rightarrow predicted

Jets in ALICE |η|<0.9

• ideal energy for jet-quenching: around 100 GeV

⇒ pQCD applicable

⇒ jets measurable above soft background

- ➡ energy loss still relatively large effect
 - $\Delta E/E \sim O(10\%)$, decreasing with E !

p _t jet > (GeV/c)	jets/event	accepted jets/month		
5	3.5 10 ²	4.9 10 ¹⁰		
50	7.7 10 ⁻²	1.5 10 ⁷		
100	3.5 10 ⁻³	8.1 10 ⁵		
150	4.8 10⁻⁴	1.2 10 ⁵		
200	1.1 10 ⁻⁴	2.8 10 ⁴		

Reasonable rate up to E_T ~300 GeV

Heavy Quarks & Quarkonia

copious heavy quark production

- ⇒ charm @ LHC ~ strange @ SPS
 - hard production => 'tracer' of QGP dynamics (statistical hardonization ?)
 - $\odot 2 m_c \sim saturation scale => change in production ?$
 - jet-quenching with heavy quarks visible in inclusive spectra ?

• Y dσ/dy LHC ~ 20 x RHIC

Y will probably need
higher Lumi at RHIC
even at LHC Y'' is difficult

- my pre-RHIC guess (QM2001)
 - ⇒ still expect conditions to be significantly different
 - ⇒ only LHC will give the final answer on dn/dy!

	Central collisions	SPS	RHIC	LHC
Significant gain in ε , V, τ	s ^{1/2} (GeV)	17	200	5500
≈ x 10 SPS -> LHC	dN _{ch} /dy	430	700-1500	2-8 x10 ³
≈ x 3-5 RHIC -> LHC	ε (GeV/fm³) _{τ0=1fm}	2.5	3.5-7.5	15-40
	V _f (fm³)	10 ³	(?)7x10 ³	2x104
16 RHIC ε_{SB}/T^4	τ _{QGP} (fm/c)	<1	1.5-4.0	4-10
	τ ₀ (fm/c)	~1	~0.5	<0.2
$\begin{array}{c} 10\\ 8\\ 6\\ 4\\ 2\\ 0\\ 100\\ \end{array} \begin{array}{c} 10\\ 8\\ 6\\ 4\\ 2\\ 10\\ 0\\ \end{array} \begin{array}{c} 10\\ 10\\ 100\\ \end{array} \begin{array}{c} 20\\ 10\\ 20\\ 100\\ \end{array} \begin{array}{c} 30\\ 10\\ 30\\ 100\\ \end{array} \begin{array}{c} 30\\ 10\\ 100\\ 100\\ \end{array} \begin{array}{c} 10\\ 10\\ 10\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$			Karea 2004	Schukraft

changes in expansion dynamics & freeze-out ARE expected

y (fm)

- ⇒ thermal freeze-out temperature ?
- ⇒ how will charm fit into particle ratios ?
- ⇒ Event-by-Event fluctuations ?

c measurement accuracy ~ √#particles
 ⇒ will elliptic flow continue to rise ?
 ⇒ will the measured transverse HBT volume (finally) increase ?

Freeze-out Hyper surface

Rapidit

<u>central barrel</u> -0.9 < η < 0.9

- ➡ tracking, PID
- ⇒ single arm **RICH** (HMPID)
- ⇒ single arm em. calo (PHOS)

forward muon arm 2.4 < η < 4

⇒ absorber, dipole magnet tracking & trigger chambers

<u>multiplicity</u> -5.4 < η < 3

➡ including photon counting in PMD

- trigger & timing dets
- Zero Degree Calorimeters
- ➡ T0: ring of quartz window PMT's
- ➡ V0: ring of scint. Paddles

-6	Ţ		PHOS 12 < $\eta < 0$ $\Delta \phi = 100^{\circ}$.12	HMP 45 < η · Δφ = :	ID < 0.45 57°
-4	4	-	FMD -5.4	< η < -	1.6	
-3	_		PMD -2.3	< η < -	3.5	
-2	-	-				
-1			ITS+7	CPC+T	RD+TO	F: V
0			-0.9 <	η < 0.	9	
1			ITS multi	plicity	-2<η<	2
2	_	_	FMD 1.	6 < η <	< 3	
3	_		Muon arm	2.4 <	η < 4	
4		-				
Azi	m	nt	h 90°	180 °	270 °	360 °

ALICE Collaboration

Korea 2004 J. Schukraft

General Purpose Heavy Ion Detector

- ⇒ one single dedicated HI expt at LHC
 - ATLAS/CMS will contribute, but priority is pp physics
 - ✿ AGS/SPS: several (6-8) 'special purpose expts'
 - RHIC: 2 large multipurpose + 2 small special purpose expts

cover essentially all known observables of interest

comprehensive study of hadrons at midrapidity
 large acceptance, excellent tracking and PID
 state-of-the-art measurement of direct photons
 excellent resolution & granularity EM calo (small but performing !)
 dedicated & complementary systems for di-electrons and di-muons
 cover the complete spectrum: from soft (10's of MeV) to hard (100's of GeV)

stay open for changes & surprises

high throughput DAQ system + powerful online intelligence ('PC farm', HLT)
 flexible & scalable: minimum design prejudice on what will be most interesting

still largest magnet

➡ magnet volume: 12 m long, 12 m high

⇒ 0.5 T solenoidal field

The ALICE Magnet:

ready for the experiment to move in!

ALICE R&D

1990-1996:Strong, well organized, well funded R&D activity

Inner Tracking System (ITS)

- ⇒ Silicon Pixels (RD19)
- ⇒ Silicon Drift (INFN/SDI)
- ⇒ Silicon Strips (double sided)
- ⇒ low mass, high density interconnects

(**?**

⇒ low mass support/cooling

• TPC

- ⇒ gas mixtures (RD32)
- ⇒ new r/o plane structures
- ⇒ advanced digital electronics
- ⇒ low mass field cage

em calorimeter

⇒ new scint. crystals (RD18)

• PID

- ⇒ Pestov Spark counters
- ⇒ Parallel Plate Chambers
- A Multigap RPC's (LAA)
- ➡ low cost PM's
- ⇒ solid photocathode RICH (RD26)

DAQ & Computing

- \Rightarrow scalable architectures with <u>COTS</u> ?
- ⇒ high perf. storage media
- ⇒ GRID computing

• misc

- ⇒ micro-channel plates
- ⇒ rad hard quartz fiber calo.
- ⇒ VLSI electronics

was vital for all LHC experiments to meet LHC challenge !

Time of Flight Detectors

aim: state-of-the-art TOF at ~1/10 current price !

 \Rightarrow requirements: area > 150 m², channels ~ 150,000, resolution σ < 100 ps

- ⇒ existing solution: scintillator + PM, cost > 120 MSF !
 - R&D on cheaper fast PM's in Russia failed to deliver

gas TOF counters + VLSI FEE

Pestov Spark Counter (PSC)

• 100 μ m gap, > 5 kV HV, 12 bar, sophisticated gas

• $\sigma < 50$ ps, some 'tails' (?), but only (!) ~ 1/5 cost

technology & materials VERY challenging

⇒ Parallel Plate Chamber (PPC)

• 1.2 mm gap, 1 bar, simple gas & materials • 1/10 cost, but only $\sigma = 250 \text{ ps}$

unstable operation, small signal

Multigap Resistive Plate Chambers (MRPC)

breakthrough end 1998 after > 5 years of R&D !
 many small gaps (10x250 μm), 1 bar, simple gas & materials
 ~ 1/10 cost, σ < 100 ps , simple construction & operation,..

• 6 Layers, three technologies (keep occupancy ~constant ~2% for max multiplication = 43.6 cm

- ⇒ Silicon Pixels (0.2 m², 9.8 Mchannels)
- ⇒ Silicon Drift (1.3 m², 133 kchannels)
- ⇒ Double-sided Strip (4.9 m², 2.6 Mchannels)

Material Budget: < 1% X₀ per layer !

ITS Electronics Developments

ALICE PIXEL CHIP (all full-custom designs in rad. tol., 0.25 μm process) $50 \,\mu\text{m} \text{ x } 425 \,\mu\text{m} \text{ pixels}$ 8192 cells **ALICE SSD FEE** Area: 12.8 x 13.6 mm² HAL25 chip: 128 channels 13 million transistors Preamp+s/h+ ~100 µW/channel serial out ALICE SDD FEE Pascal chip: 64 channel preamp+ 256-deep <u>eamplifier</u> analogue memory+ ADC Ambra chip: Analogue 64 channel memory derandomizer chip And extreme lightweight interconnection techniques: **SSD** tab-bondable

SSD tab-bondabl Al hybrids

Strip module assembly

A DATA DE LA DESTRUCCIÓN DE LA

Drift cooling system

ားရဲ့စီ

-

0

Pixel ladder

System testing and series production

Tracking Challenge

TPC R/O chambers

production finished in Bratislava and GSI

PbW0₄: Very dense: $X_0 < 0.9$ cm Good energy resolution (after 6 years R&D):

 stochastic
 2.7%/E^{1/2}

 noise
 2.5%/E

 constant
 1.3%

for photons, neutral mesons and γ-jet tagging

- single arm em calorimeter
 - ➡ dense, high granularity crystals
 - o novel material: PbW0₄
 - ⇒ ~ 18 k channels, ~ 8 m²
 - ⇒ cooled to -25°

Dimuon Spectrometer

- Study the production of the J/Ψ, Ψ', Y, Y' and Y" decaying in 2 muons, 2.4 <η < 4
- Resolution of 70 MeV at the J/ Ψ and 100 MeV at the Y

Station 3-4: Slats

Trigger RPC

The water

Station 1&2: Quadrants

Dipole Magnet

- ⇒ 0.7 T and 3 Tm
 ⇒ 4 MW power, 800 tons
- ⇒ World's largest warm dipole

The Problem: Online: storing up to 1.2 Gbyte/s ⇒ whole WWW in few hours on tape !

⇒ ~ 10 x RHIC !

Offline: 18 MegaSI2000

⇒ 100,000 PC's in 2000 (500 Mhz)
 ⇒ ~ 100 x RHIC !!

The Answer:

cheap mass market components

Industry & Moore's law

The Challenge:

make 100,000 mice do the

work of one elephant

38

new computing paradigm: The GRID

reduced number of components (PC's etc.) available in 2003

ALICE GRID is there: ALIEN

The CORE GRID functionality exists

• Distributed production working, distributed analysis to be done...

AGS/SPS: 1986 – 1994

existence & properties of hadronic phase
 chemical & thermal freeze-out, collective flow,...

• SPS: 1994 – 2003

⇒ 'compelling evidence for new state of matter with many properties predicted for QGP'

✿ J/Ψ suppression (deconfinement ?)

Iow mass lepton pairs (chiral restoration ?)

• RHIC: 2000 - ?

⇒ compelling evidence -> establishing the QGP ?

parton flow, parton energy loss

however: soft ~ semihard; lifetime hadron ~ parton phase

• LHC: 2007 - ??

⇒ (semi)hard >> soft, lifetime parton >> hadron phase

precision spectroscopy of 'ideal plasma 'QGP
 heavy quarks (c,b), Jets, Y, thermal photons

LHC: will open the **next** chapter in HI physics significant step over & above existing facilities **THE** place to do frontline research after 2007

