<u>CBM Experiment:</u> <u>Opportunities for FAIR-GSI</u>

Contents

- FAIR Project at GSI
- CBM at FAIR
 - Unique Opportunity for the dense matter study
- Discussion

Feb. 23-24, 2006

Facility for Antiproton and Ion Research

Research Programs at FAIR (SFRS)

Rare isotope beams: nuclear structure and nuclear astrophysics nuclear structure far off stability, nucleosynthesis in stars and supernovae

Research Programs at FAIR (PANDA)

Beams of antiprotons: hadron physics

quark-confinement potential, search for gluonic matter and hypernuclei, ...

Charmonium ($c\bar{c}$) spectroscopy: precision measurements of mass, width, and decay channels of charmonium states (\rightarrow quark confinement)

Search for gluonic excitations:

Charmed hybrids, glueballs in the mass region of charmonia $(3 - 5 \text{ GeV/c}^2)$.

Search for in-medium modifications of hadron properties

Signal for onset of chiral symmetry restoration

at normal nuclear matter density

Precision γ-spectroscopy of single and double hyper nuclei Information on nuclear structure and on hyperon-nucleon and hyperon-hyperon interaction.

Research Programs at FAIR (CBM)

High-energy nucleus-nucleus collisions Study compressed baryonic matter

baryonic matter at highest densities (neutron stars) phase transitions and in-medium properties of hadrons at extreme conditions

Heavy-ion Meeting (홍병식)

"Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter ? Deconfinement at high baryon densities ?

Nuclear Phase Diagram

Relativistic Heavy-Ion Accelerators

Accelerator	c.m. Energy (GeV)	Status
SIS18 (GSI, Germany)	2A (A=mass number)	Running
AGS (BNL, USA)	5A	Finished
SIS300 (GSI, Germany)	8A	Plan to run from ~2014
SPS (CERN, Switzerland)	20A	Finish soon
RHIC (BNL, USA)	200A	Running since 2000
LHC (CERN, Switzerland)	5500A	Plan to run from ~2007

Critical endpoint: Z. Fodor, S. Katz, hep-lat/0402006 S. Ejiri et al., hep-lat/0312006

baryonic chemical potential $\mu_{\text{B}} \left[\text{GeV} \right]$

Feb. 23-24, 2006

Physics Topics

 In-medium modifications of hadrons onset of chiral symmetry restoration at high $\rho_{\rm B}$ observables: $\rho, \omega, \phi \rightarrow e^+e^$ open charm production 2. Strangeness in matter (strange matter) enhanced strangeness production observables: K, Λ , Σ , Ξ , Ω 3. Indications for deconfinement at high $\rho_{\rm B}$ anomalous charmonium suppression? observables: J/ψ , D excitation function of flow (softening of EOS)

4. Critical point

observables: event-by-event fluctuations

Diagnostic Signals at Various Stages

Looking into the fireball,

... using the penetrating probes: short-lived vector mesons decaying into electron-positron pairs

Heavy-ion Meeting (홍병식)

Low Mass Vector Mesons to e⁺e⁻ pair

CERES Collaboration: D.Adamova et al., Phys. Rev. Lett. 91 (2003) 042301

Number of pairs for m>0.2 GeV/c2: 180+-48 Ratio Signal/Background: 1/6

Hadronic decay cocktail:

particle ratios taken from thermal model for Pb-Pb
rapidity and pt distributions from systematics in Pb-Pb

Enhancement: measured pairs/decay cocktail: 5.0 +- 1.3

Strangeness Production

When the enhancement of hyperons starts?

Charm Production

Heavy-ion Meeting (홍병식)

Event-by-Event Fluctuations

Fluctuations from NA49

Photons

WA98, Phys. Rev. Lett. 93 (022301), 2004

<u>Requirements</u>

Very High Beam Intensity ! Large Acceptance ! Large Spill Fraction !

Central collisions	25 AGeV Au+Au	158 AGeV Pb+Pb
J/ψ multiplicity beam intensity interactions central collisions J/ψ rate	1.5·10 ⁻⁵ 1·10 ⁹ /s 1·10 ⁷ /s (1%) 1·10 ⁶ /s 15/s	1⋅10 ⁻³ 2⋅10 ⁷ /s 2⋅10 ⁶ /s (10%) 2⋅10 ⁵ /s 200/s
BR $J/\psi \rightarrow e^+e^- (\mu^+\mu^-)$	0.9/s	12/s
spill fraction acceptance J/w measured	0.8 0.25 0.17/s	0.25 ≈ 0.1 ≈ 0.3/s
	$\approx 1.10^{5}$ /week	\approx 1.8·10 ⁵ /week

Feb. 23-24, 2006

Heavy-ion Meeting (홍병식)

<u>Requirements</u>

Have to measure the displaced vertex with resolution of $\approx 50 \ \mu m$

High Precision on Tracking !

Some hadronic decay modes

 $\begin{array}{l} D^{\pm} \, (c\tau = 317 \ \mu m) \text{:} \\ D^{+} \rightarrow \, \mathsf{K}^{0} \pi^{+} \, (2.9 \pm 0.26 \%) \\ D^{+} \rightarrow \, \mathsf{K}^{-} \pi^{+} \pi^{+} \, \, (9 \pm 0.6 \%) \end{array}$

D⁰ (c τ = 124.4 µm): D⁰ \rightarrow K⁻ π^+ (3.9 ± 0.09%) D⁰ \rightarrow K⁻ π^+ π^+ π^- (7.6 ± 0.4%)

<u>Requirements</u>

Dominant background in e^+e^- invariant mass spectrum: π^0 -Dalitz decay and gamma conversion

Good identification of soft electrons and positrons !

Requirements

- data (NA60 presented at QM05)
 - sum of cocktail sources including the p contribution

CBM Detector Proposal

Radiation hard silicon pixel/strip detectors in a magnetic dipole field

Electron identification: RICH & TRD & ECAL for the pion suppression up to 10⁵

Hadron identification: RPC, RICH

Measurements of photons, π^0 , and η : EM calorimeter (ECAL)

High speed data acquisition and trigger system (Muon option is under investigation)

Simulation

Central Au+Au at 25A GeV: URQMD + GEANT4

160 p/400 π^{-} /400 π^{+} /44 K⁺/13 K⁻

~600 charged particles in $\pm~25^\circ$

Silicon Vertex Detector

Silicon Tracking System: 2 (3) Pixel Stations/ 5 (4) Strip Stations Vertex tracking: two pixel layers (5 cm and 10 cm downstream target)

Design goals:

- low materal budget: d < 200 μm
- single hit resolution < 20 μ m
- radiation hard (dose $10^{15} n_{eq}/cm^2$)
- read-out time 25 ns

Roadmap:

R&D on Monolithic Active Pixel Sensors (MAPS)

- thickness below 100 µm ✓
- pitch 20 μ m, single hit resolution : \approx 3 μ m \checkmark
- radiation tolerant (10¹³ n_{eq}/cm²)
- ultimate read-out time few µs

Alternative: next generation of thin, radiation hard, and fast hybrid detectors

Feb. 23-24, 2006

MIMOSA IV IReS / LEPSI Strasbourg

D-meson Reconstruction

Track reconstruction (Kalman filter) without magnetic field, dp/p = 1% using track information from MAPS Silicon Tracker only (no particle ID)

Hyperon with STS only

32

6.7%

TOF Resistive Plate Chamber

Design goals:

- Time resolution $\leq 80 \text{ ps}$
- Rate capability up to 20 kHz/cm²
- Efficiency > 95 %
- Large area $\approx 100 \text{ m}^2$
- Long term stability

FOPI MMRPC project

Various options are under investigation:

- Strip vs. pad readout
- Single cell vs. multichannel RPC

200

Glass vs. plastic electrodes

110

Particle Identification with TOF

Fast RICH

Design goals:

- electron ID for $\gamma > 42$
- e/π discrimination > 100
- hadron blind up to about 6 GeV/c
- low mass mirrors (Be-glass)
- fast UV detector

URQMD + GEANT4: Au+Au 25 AGeV radiator (40% He + 60% CH_4) ~ 50 rings per event 30-40 photons per ring

Feb. 23-24, 2006

Heavy-ion Meeting (홍병식)

Fast TRD

Design goals:

- e/π discrimination of > 100 (p > 1 GeV/c)
- High rate capability up to 100 kHz/cm²
- Position resolution of about 200 µm
- Large area (≈ 450 650 m², 9 12 layers)

36

MWPC GSI, Bucharest

Low Mass e⁺e⁻ pairs

Generic study assuming ideal tracking Background: URQMD Au+Au 25 AGeV + GEANT4 Magnetic fields: 0T, 0.5 T (constant), 1 T (constant)

Feb. 23-24, 2006

Low Mass e⁺e⁻ pairs

Charmonium

Assumptions:

no track reconstruction momentum resolution 1% Pion suppression 10⁴ Background:

central Au + Au UrQMD + GEANT4 Cut $p_T > 1$ GeV/c

Experimental Conditions

Hit rates for 10⁷ minimum bias Au+Au collisions at 25A GeV:

Θ mrad	dis	TRD 1 tance 4	m	TRD 2 distance 6 m		TRD 3 distance 8 m			TOF-RPC distance 10 m			
	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻²	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻²	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻³	rates kHz/ cm ²	area m²	N cm ⁻² x 10 ⁻³
50 – 100	100	0.5	4.5	50	1.2	2.2	32	2.1	14.0	20	3.2	8.9
100 – 150	53	1.0	2.6	25	2.2	1.3	15	3.9	7.0	13	5.8	6.5
150 – 200	26	1.4	1.4	13	3.1	0.66	7.9	5.5	3.9	6.6	8.1	3.2
200 – 250	17	1.8	0.78	7.5	4.1	0.36	4.8	7.3	2.3	4.5	10.2	2.0
250 – 300	9.6	2.3	0.46	5.0	5.2	0.24	2.7	9.2	1.4	2.6	12.3	1.4
300 – 350	7.1	2.8	0.34	3.3	6.4	0.17	2.0	11.3	0.95	2.1	14.3	1.0
350 – 400	4.4	3.4	0.21	2.1	7.7	0.1	1.3	13.7	0.65	1.8	16.1	0.69
400 – 450	2.0	4.1	0.09	1.0	9.3	0.05	0.6	16.5	0.29	0.8	17.7	0.31
450 – 500	0.9	4.9	0.04	0.4	11	0.02	0.3	19.6	0.13	0.4	19.2	0.14
sum		22.2			50.2			89.1			106.8	

Rates of > 5 kHz/cm² ⇒ major detector R&D required

Feb. 23-24, 2006

Heavy-ion Meeting (홍병식)

CBM Collaboration

41 institutions, 15 countries

Croatia: RBI, Zagreb China: Wuhan Univ. Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Tech. Univ. Prague France: **IReS Strasbourg** Hungary: **KFKI** Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen

Germany:

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Poland: Krakow Univ. Warsaw Univ Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

Russia:

CKBM, St. Petersburg **IHEP** Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE. JINR Dubna LPP, JINR Dubna LIT, JINR Dubna **MEPHI Moscow** Obninsk State Univ. **PNPI** Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev

Working Groups

		-			
	R&D on fast gaseous detectors for TRD	JINR-LHE Dubna, GSI Darmstadt, Univ. Münster, PNPI			
	R&D on straw tube tracker (TRD)	JINR-LPP Dubna, FZR Rossendorf			
	R&D on Ring Imaging Cherenkov Detector	IHEP Protvino, GSI Darmstadt, Pusan Nat. Univ., PNPI			
	(RICH)	St. Petersburg			
	Design and construction of an	ITEP Moscow, Univ. Krakow, Univ. Frankfurt			
	electromagnetic calorimeter (ECAL)				
	Diamond microstrip detector	GSI, Univ. Mannheim			
Task	·				
	Trigger and Data Acquisition	KIP Univ Heidelberg, Univ Mannheim, JINR LIT Dubna			
Feasibility study D-Meson identification		GSI Darmstadt, Univ. Bergen, KFKI Budapest, Silesia			
·,,		Univ Katowice PNPI St Petersburg			
Feasibility study low-mass vector meso		Univ Warsaw			
identification via electron-nositron nairs	Design of a superconducting dipole	INR-LHE Dubna, GSI Darmstadt			
Eeasibility study charmonium identificat	magnet	Sini (-Erie Babila, OSI Barristade			
via electron-nositron nairs	Calculation of radiation doses	Kiev I Iniv			
Feasibility study charmonium identificat	Calculation of radiation doses				
via muon nairs	Modification of HADES for 8 AGeV	Czech Acad. Science Rez			
Simulations hadron identification via TC	Modification of HADES for 0 ACEV				
	Delta electrons	GSI Darmstadt			
Simulation tools					
	1				
Tracking	KIP Univ Heidelberg Univ Mannheim J	INR-I HE			
	Dubna, JINR-LIT Dubna				
Silicon Pixel Detector	IReS Strashourg Frankfurt Univ GSI D	armstadt RBI			
	Zagreb, Krakow Univ.				
Silicon Strip Detector	Obninsk Univ., SINP Moscow State Univ	CKBM St.			
	Petersburg, KRI St. Petersburg	., ., ., ., ., .,			
R&D on RPC TOF detector system with	h LIP Coimbra, Univ. Santiago de Compos	stela. Univ.			
read-out electronics	Heidelberg, GSI Darmstadt, NIPNE Buch	narest. INR			
	Mascow, FZR Rossendorf, IHEP Protvin	no. ITEP			
	Moscow Korea Univ. Seoul. RBI Zagreb	Univ. Krakow. 42			
	Univ. Marburg	42			
	etter than bang				

The FAIR member states (March 2005)

Funding profile

Finance Plan Accumulated

Total:

M€

675

<u>Summary</u>

- 1. Systematic investigations of dense matter
 - A+A collisions from 8 to 45A GeV (for Z/A=0.5)
 - p+p and p+A collisions from 8 to 90 GeV
 - Beam energies up to 8A GeV by HADES
- 2. Detector and machine requirements
 - High beam intensity and duty cycle
 - Large geometrical acceptance
 - Good hadron and electron identification
 - Excellent vertex resolution
 - High rate capability of detectors, FEE and DAQ
- 3. Observables
 - Penetrating probes: ρ , ω , ϕ , J/ψ (light and heavy vector mesons)
 - Strangeness: K, Λ , Σ , Ξ , Ω
 - Open charm: D^o, D^{\pm}
 - Hadrons (p, π), exotica, etc.

4. It will be a unique opportunity for the study of dense nuclear matter.