Him 2006 May Meeting ANDONG, 2006. 5. 20

Elliptic Flow and Jet Quenching at RHIC

Ghi R. Shin

Andong National University

gshin@andong.ac.kr

J.Phys G. 29, 2485/JKPS 43, 473

1. INTRODUCTION

Recent Conclusion of 1st RUNS at RHIC (STAR, PHENIX, BRAHMS, PHOBOS):

STRONGLY INTERACTING QGP of PERPECT FLUID:

 Elliptic Flow can be explained by HYDRODYNAMICS.
 Awayside JET QUENCHING.
 and so on

- JUST MENTION:
 - Hydrodynamics can be applicable if
 Momentum Isotropic (P Arnold, J Lenaghan,
 GD Moore and LG Yaffe, nucl-th/0409068)
 - Is the Boltzmann equation(Kinetic theory) valid? Maybe YES. A. Mueller and DT Son showed that the dense classical field theory is equivalent to the Boltzmann equation(hep-th/0212198).

2. OVERVIEW of the TALK

Basic Algorithm of PARTON CASCADE CODE
 INITIAL PHASE SPACE
 SOME RESULTS
 CONCLUSIONS

3. PCC

· PCC:

1) Suppose we have N-particles.

- 2) Let them evolve classically (but relativistically)
- 3) Calculate the closest distance among the evolving particles just like QED.
- 4) r_d < r_sigma : Collision
 - r_d > r_sigma : NO collision
- 5) Sort all the collisions to make the initial collision list.
- 6) Let the particles on the list collide one by one and pick up new particles and momenta.
- 7) calculate r_d for the new particle
- 8) Update the collision list.
- 9) Go to the step 6 until the final time.

4. INITIAL PHASE-SPACE

• Most important stuff of Kinetic theory is INITIAL PHASE SPACE DISTRIBUTION!!!

Many kinds of IPS on the market.
1) Factorization method:
2) CGC Shattering method:

Factorization:

- Pros: 1) will be good at LHC2) include quarks, antiquarks3) give reliable jets
- Cons: 1) no soft partons 2) No good at RHIC

CGC Shattering:

- pros: 1) can get soft partons
 - 2) Good at RHIC
- cons: 1) no quarks and antiquarks
 - 2) seems to produce too many JETS

Factorization Method:

- The PARTON DISTRIBUTION of HIGH ENERGY Au: $f_{i/A}(x, Q^2) = f_{i/N}(x, Q^2) R_A(x, Q^2),$
 - x : Bjorken Variable
 - Q : Transverse momentum,
 - N: Nucleon
 - i : Parton
 - $f_{i/N}$: The distribution of i-parton, GRV98 Function
 - R_A: Nucleon distribution of Nucleus A, EKS98 Ratio Function

Combine the distribution functions with (elastic) parton
 parton cross section to get the primary partons:

$$\frac{dN^{jet}(\vec{b})}{dp_T dy} = KT(\vec{b}) \int dy_2 \frac{2\pi p_T}{\hat{s}} \sum_{ij,kl} x_1 f_{i/A}(x_1, Q^2) x_2 f_{j/A}(x_2, Q^2) \frac{1}{2} \sigma_{ij \to kl}(\hat{s}, \hat{t}, \hat{u})$$

b : impact parameter,K : K-factor to include higher order,T(b) : Overlap function,

$$T(\vec{b}) = \int \vec{ds} T_A(\vec{s}) T_B(\vec{b} - \vec{s})$$

 T_A : Thickness function of the nucleus A.

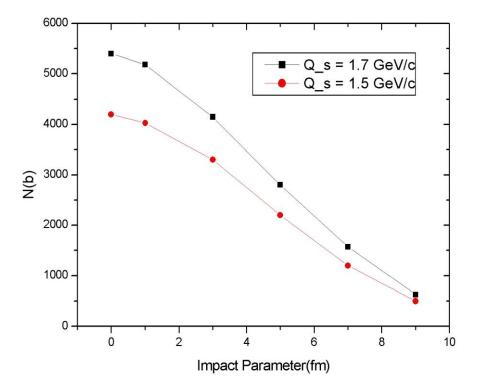
> Note that the space-time are missing here!!

Numbers of Produced Partons After Relativistic Heavy Ion Collisions(200 AGeV Au, $Q_0 = 1.2$ GeV)

b(fm)	Gluons	Quarks	Antiquarks	Total
0	3731	585	134	4450
1	3583	561	128	4272
2	3269	512	117	3898
3	2865	449	102	3416
4	2415	378	86	2879
5	1952	306	70	2328
6	1503	235	53	1791
7	1088	170	39	1297
8	727	114	26	867
9	433	67	15	515
10	215	33	7	255
11	75	11	2	88
12	10	1	0	11

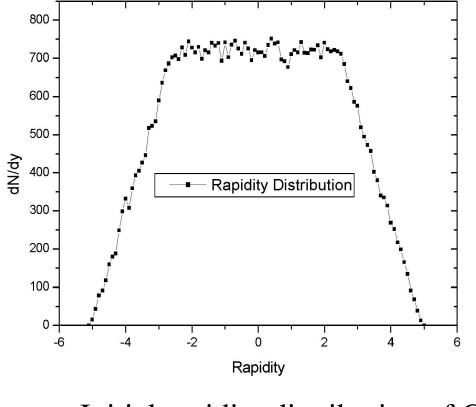
CGC Shattering Method:

- Krasnitz, Nara and Venugopalan(KNV), Phys. Lett. B 554, 21 (2003); Nucl. Phys. A 717, 268 (2003).
- Lappi, Phys. Rev. C 67, 054903.

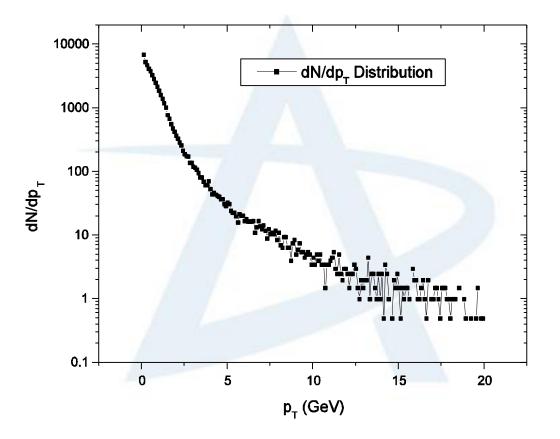

$$\frac{dN}{dyd^2k_T} = \frac{\pi R^2}{g^2} f(k_T/\Lambda_s)$$

$$f = \frac{1}{g^2} \left(\begin{array}{l} a_1 [\exp(\sqrt{k_t^2 + m^2}/T_{eff}) - 1]^{-1}, k_t/\Lambda_s < 1.5 \\ a_2\Lambda_s^4 \log(4\pi k_t/\Lambda_s) k_t^{-4}, k_t/\Lambda_s > 1.5 \end{array} \right)$$

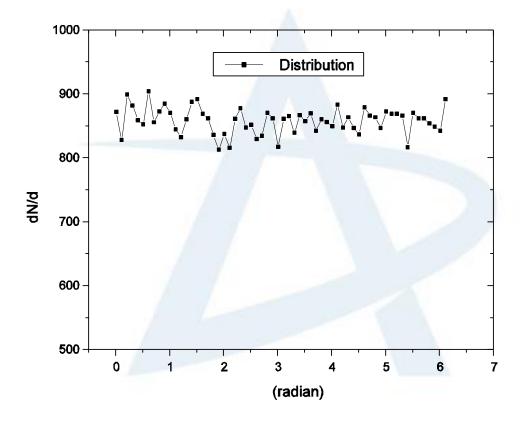
 $a_1=0.137, a_2=0.0087, m=0.0358\Lambda_s, T_{eff}=0.465\Lambda_s$


• Number of Partons:

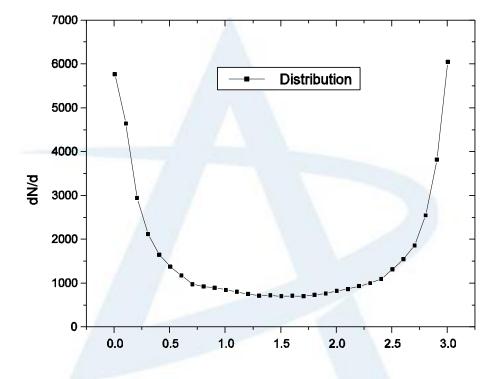
<Number of Partons produced:>


• Initial rapidity distribution:

<Initial rapidity distribution of CGC: b=0fm>

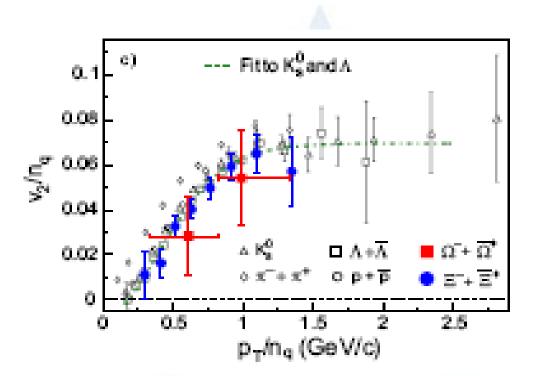

• Transverse momentum distribution:

<Transverse momentum: b=0fm>

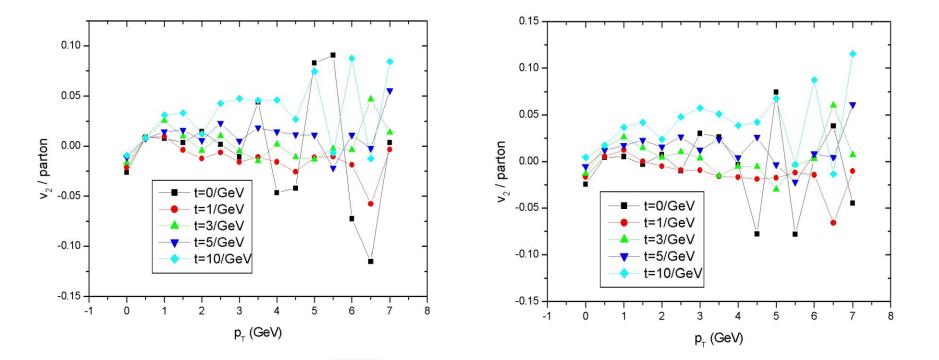


• Azimuthal distribution:

• Polar angle distribution:

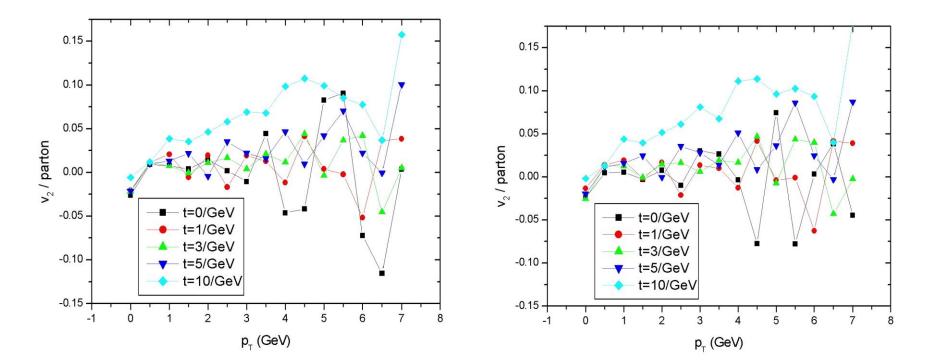


<Can see the strong orientation to collision axis: b=0fm>


5. RESULTS

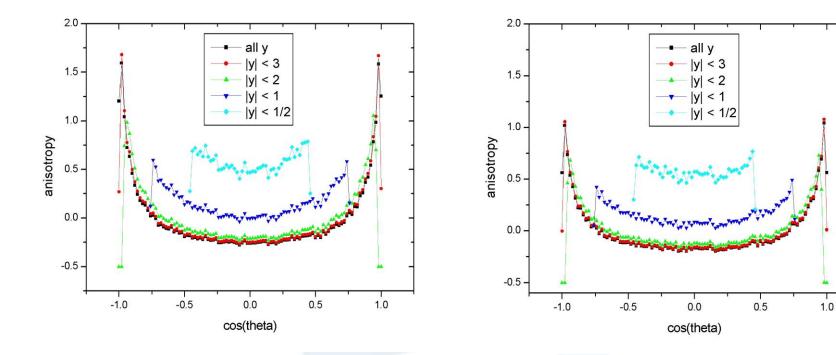
• Elliptic Flow:

<from STAR:0501009>



<b=7fm,K=2, LPM, all y >

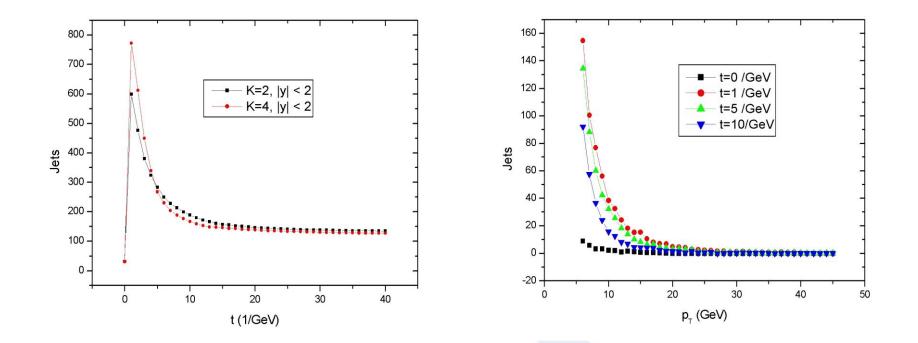
<b=7fm,K=2, LPM, |y| < 2 >



<b=7fm,K=4, LPM, all y >

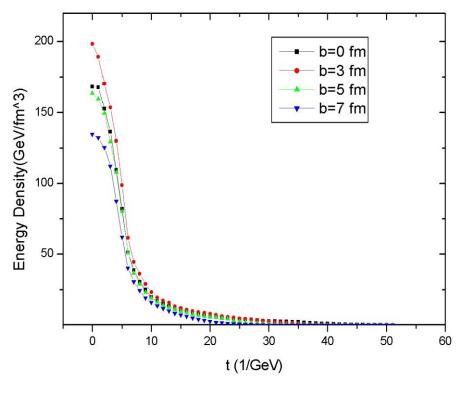
<b=7fm,K=4, LPM, |y| < 2 >

• **Polar Anisotropy**: $n(\theta, \phi) = \frac{1}{N_T} \frac{dN}{d\Omega} - \frac{1}{2}$

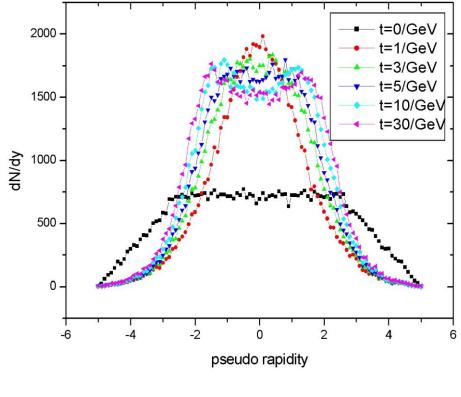


<b=0fm,K=2,LPM,t=3fm/c>

<b=0fm,K=4,LPM,t=3fm/c>


• Number of JET and transverse distribution:

<b=0fm, K=2, LPM, |y|<2 >


• Energy Density

< K=2, LPM, at center with r=1.1fm >

• Pseudo Rapidity Distribution:

<K=2, LPM, b=0fm >

5. CONCLUSION

- It seems to me that the elliptic flow can be understood without hydrodynamics
- There are many secondary JETS but lose energy
- Momentum isotropy(polar) cannot be achieved even with limited rapidity range

• THANK YOU VERY MUCH!

