Hadron Physics at RHIC

Su Houng Lee Yonsei Univ., Korea

- 1. Introduction for Exotics
- 2. Hadron production in HIC
- 3. Exotics from RHIC

Thanks to: Former collegues and students Present students: Y. Park, Y. Sarac, Y. Heo, K. Kim Post doc: K. Ohnishi

Introduction for Exotics

Definition of Exotics

1. Hadrons that can not be explained by quarkantiquark, or 3 quarks

Exotics	$udud\overline{s}$,	$ud\overline{c}\overline{s},$	udēē
Non Exotics	$udus\overline{s},$	udusū,	ucūc

2. That are bound by strong interaction

- 3. Reasons for its search are similar to that for superheavy Element in low energy nuclear Physics
 - \rightarrow Understand QCD \rightarrow sQGP

Experiment - First claim

1. LEPS coll., Nakano et.al. PRL 91 012002 (2003)

Mass= 1.54 GeV , width <25 MeV , quark content= uudds

Experiment - Recent claim

In Carbon target $\sigma(\Lambda(1520)) >> (\Theta^+(1540))$, but

 $\gamma n(p) \to \mathcal{O}^{\dagger} K^{-}(p)$ $\mathcal{O}^{\dagger} \to K^{+} n$ "Exotic"

Positive results

Negative results

Reference	Group	Reaction	Mass	Width	σ's*
			(MeV)	(MeV)	
[1]	LEPS	$\gamma C \rightarrow K^+K^-X$	1540 ± 10	< 25	4.6
[2]	DIANA	$K^+Xe \rightarrow K^0pX$	1539 ± 2	< 9	4.4
[3]	CLAS	$\gamma d \rightarrow K^+K^-p(n)$	1542 ± 5	< 21	$5.2 \pm 0.6^{\dagger}$
[4]	SAPHIR	$\gamma d \rightarrow K^+ K^0(n)$	1540 ± 6	< 25	4.8
[5]	ITEP	$\nu A \rightarrow K^0 p X$	1533 ± 5	< 20	6.7
[6]	CLAS	$\gamma p \rightarrow \pi^+ K^+ K^-(n)$	1555 ± 10	< 26	7.8
[7]	HERMES	$e^+d \rightarrow K^0 pX$	1526 ± 3	13 ± 9	~ 5
[8]	ZEUS	$e^+p \rightarrow e^+K^0pX$	1522 ± 3	8 ± 4	~ 5
[9]	COSY-TOF	$pp \rightarrow K^0 p\Sigma^+$	1530 ± 5	< 18	4-6
[10]	SVD	$pA \rightarrow K^0 pX$	1526 ± 5	< 24	5.6

Table 1: Published experiments with evidence for the Θ^+ baryon.

* Gaussian fluctuation of the background, as $N_{prak}/\sqrt{N_{BG}}$. This "naive" significance may underestimate the real probability of a fluctuation by about 1-2 σ .

[†] Further analysis of the CLAS deuterium data suggest that the significance of the observed peak may not be as large as indicated.

Reference	Group	Reaction	Limit	Sensitivity?
[11]	BES	$e^+e^- \rightarrow J/\Psi \rightarrow \Theta\Theta$	< 1.1 × 10 ⁻⁵ B.R.	No [68]
[12]	BaBar	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK^0X$	$< 1.0 \times 10^{-4}$ B.R.	Maybe
[13]	Belle	$e^+e^- \rightarrow B^0\bar{B}^0 \rightarrow p\bar{p}K^0X$	$< 2.3 \times 10^{-7}$ B.R.	No
[14]	LEP	$e^+e^- \rightarrow Z \rightarrow pK^0X$	$< 6.2 \times 10^{-4}$ B.R.	No?
[15]	HERA-B	$pA \rightarrow K^0 pX$	$< 0.02 \times \Lambda^{\bullet}$	No?
[16]	SPHINX	$pC \rightarrow K^0\Theta^+X$	$< 0.1 \times \Lambda^{\bullet}$	Maybe
[17]	HyperCP	$pCu \rightarrow K^0 pX$	$< 0.3\% \ K^0 p$	No?
[18]	CDF	$p\bar{p} \rightarrow K^0 p X$	$< 0.03 imes \Lambda^{*}$	No?
[19]	FOCUS	$\gamma BeO \rightarrow K^0 pX$	$< 0.02 \times \Sigma^{\bullet}$	Maybe
[20]	Belle	$\pi + Si \rightarrow K^0 pX$	$< 0.02 imes \Lambda^{ullet}$	Yes?
[21]	PHENIX	$Au + Au \rightarrow K^- \bar{n}X$	(not given)	Unknown

Table 2: Published experiments with non-observation of the Θ^+ baryon.

Recent CLAS experiments find no Θ + in γ +d or γ +p

 \rightarrow Give up, more experiment or theoretical guideline?

Theory : prediction (Diakanov, Petrov, Polyakov 97)

1. SU(3) soliton

$$L_{Kin}(U^2) + L_{Skyrme}(U^4) + L_{W-Z}$$

$$U(x,t) = R(t) \begin{pmatrix} \exp(i\pi \cdot r) & 0\\ 0 & 1 \end{pmatrix} R^{\dagger}(t)$$

where R(t) has 8 angles

I=J Hedghog

2. Quantizing the 8 angles, the Hamiltonian becomes

$$H^{Rot} = \frac{1}{2I_1} \sum_{A=1}^{3} \hat{J}'_{A}^{2} + \frac{1}{2I_2} \sum_{A=4}^{7} \hat{J}'_{A}^{2} \qquad E_{10} - E_8 = \frac{3}{2I_1}, \quad E_{1\overline{0}} - E_8 = \frac{3}{2I_2}$$

3. With constraint coming from WZ term

 $J'_8 = -\frac{N_c B}{2\sqrt{3}}$

- 1. only SU(3) representations containing Y=1 are allowed
- 2. moreover, the number of states 2I+1 at S=0 or Y= N_c/3 must determine the spin of the representation through 2J+1 because I=J in the SU(2) soliton
 - \rightarrow one spin state for given representation

Y

4. Diakanov Petrov Polyakov applied it to Anti-decuplet $\overline{10}$ which predicted M_{Θ} = 1540, Γ_{Θ} =30 MeV

Theory: why it can be wrong (T. Cohen)

1. Soliton picture is valid at large N_c :

Semi-classical quantization is valid for slow rotation: ie. Valid for describing excitations of order 1/N_c, so that it does not mix and breakdown with vibrational modes of order 1

2. Lowest representation $SU(3)_f$ (p,q) at large N_c

3. Mass splitting in large N_c :

2

1

Anit decuplet octet mass splitting is mixes with vibrational mode and inconsistent with original assumption and has undetermined correction of same order

→ Rotation is too fast and may couple to vibrational modes, which might be important to excite q qbar mode, hence describing anti decuplet state with naive soliton quantization might be wrong

Theory: Quark model of a pentaquark

Color Spin Interaction in QCD

1. In QCD q-q are also attractive if in color anti-triplet channel.

In perturbative QCD, $2C_B = C_M$ This term is called color spin interaction

Color spin interaction explains hadron spectrum

$$\frac{C_B}{m_i m_k} [s_u \cdot s_u + s_u \cdot s_d + s_u \cdot s_d]$$

= $\frac{C_B}{m_q^2} \frac{1}{2} [(s_u + s_u + s_d)^2 - s_u^2 - s_u^2 - s_d^2]$

Baryon Mass difference

Meson Mass difference

Mass Difference	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c} - M_{\Lambda_c}$	Mass Difference	$M_\rho-M_\pi$	$M_{K^*} - M_K$	$M_{D^*} - M_D$
Formula	$\frac{3C_B}{2m_c^2}$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_g}\right)$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_c}\right)$	Formula	$\frac{C_M}{m_u^2}$	$\frac{C_M}{m_u m_s}$	$\frac{C_M}{m_u m_c}$
Fit	290 MeV	- 77 MeV	154 MeV	Fit	$635 { m MeV}$	381 MeV	127 MeV
Experiment	$290 { m MeV}$	$75 { m ~MeV}$	170 MeV	Experiment	$635 \mathrm{MeV}$	397 MeV	137 MeV

Works very well with $3C_B = C_M = \text{constant}$

 $m_u = m_d = 300 \text{ MeV}, m_s = 500 \text{ MeV}, m_c = 1500 \text{ MeV}$

Why there should be a heavy pentaquark

1. For a charmed Pentaquark

$$\frac{1}{3C_B} - \frac{3C_B}{4m_u^2} - \frac{3C_B}{4m_u^2} = -290 \text{ MeV}$$

3. If recombined into a D-meson and a Nucleon

$$\begin{array}{c}
 \hline \textbf{U} \\
 \hline \textbf{G} \\
 \hline -\frac{3C_B}{4m_u^2} \\
 \hline -\frac{3C_M}{4m_um_c} \\
 \hline -240 \text{ MeV}
\end{array}$$

Other possible states - Tetraquark

С

С

b

S

С

b

218

39

-88

BB

Where to search: Baryonic decay mode of B⁺

 $B^+ \rightarrow \Lambda_c^- p \pi^+$ decay in hadronic language

Pentaquark decay mode of B⁺

lower limit in B-factory

 $(10^9)(14.4 \times 10^{-7})(0.092)(0.7)^4 = 32$ events

Can search for it in Belle S.H.Lee. Y. Kown. Y. Kwon, PRL (06)

Hadron Production in HIC

Success of statistical model

P. Braun-Munzinger, J. Stachel (95 ...)

Figure 1. Fit of particle ratios for Au-Au collisions measured at RHIC energies. The measurements are the symbols, the thermal model values are the lines [6, 10]

Recent Star data - I

FIG. 4: Resonance to stable particle ratios of Σ^*/Λ , ϕ/K^- , K^*/K^- and Λ^*/Λ for p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The ratios are normalized to unity in p+p collisions. The quadratic sum of statistical and systematic uncertainties are included in the error bars. Thermal and UrQMD model predictions are presented in the two right plot sections [13].

FIG. 1: Invariant mass distributions of $\Sigma^* \rightarrow \Lambda + \pi^{\pm}$ and $\Lambda^* \rightarrow p + K^-$ in p + p and Au + Au collisions at $\sqrt{s_{NN}} =$ 200 GeV before (inset) and after mixed-event background subtraction.

Fig. 2. The dashed curves represent an exponential fit to the data [17]. The inverse slopes (T) and the yields at mid-rapidity (dN/dy) as obtained from the fit are listed

Theoretical Explanation – Muller, Kanada-En'yo

Quark Coalescence model = Statitical model + overlap integral

$$QGP$$

$$(I)$$

Statistical model = quark coalescence + overlap

Explicit example $W^{n} = \int \prod_{i} dx_{i} dk_{i} F(x,k) |\langle H^{n} | \varphi_{i} \rangle|^{2}$ $F(x,k) = \exp[-\frac{k_{1}^{2}}{2mT} - \frac{k_{2}^{2}}{2mT}]$ $|\langle H^{n} | \varphi_{i} \rangle|^{2} = (k_{1} - k_{2})^{n} \exp[-\frac{(x_{1} - x_{2})^{2}}{b^{2}} - b^{2}(k_{1} - k_{2})^{2}.]$

$$W^{n} = \exp[-\frac{P^{2}}{2MT}] \times \int dr dk \ k^{n} \exp[-\frac{r^{2}}{b^{2}} - (b^{2} + \frac{1}{mT})k^{2}]$$

$$W^{n} / W = \frac{1}{\left(1 + \frac{1}{mTb^{2}}\right)^{n/2}}$$

Exotic production in HIC will follow statistical model

modified only by the wave function overlap integral and hadronic phase

Exotic particle production: elementary vs HIC

Exotic particle production from elementary processes

Exotic particle production from Heavy Ion collision

Example

 Θ +(1540) production in Au+Au at RHIC in central rapidity region

Statistical model

J. Randrup, PRC 68 (2003) 031903, $N_{\odot} = 1$

Coalescence model

Chen, Greco, Ko, Lee, Liu, PLB 601 (2004) 34, $N_{\odot} = 0.2$ Hadronic regeneration or dissociation is not so large

Exotics from RHIC

1. RHIC (STAR) FAIR (GSI)

Possible Decay mode of charmed Pentaquark

exotic	Decay mode	Final states	Branching ratio
udus <u>c</u>	uds(Λ) +u <u>c(D</u> ⁰)	Λ + $k^0 \pi^0 (k^+ \pi^-)$	2.3 % (3.8 %)
		Λ + k ⁰ π ⁻ π ⁺	5.97 %
	uud(p) +s <u>c</u> (Ds-)	P + k ⁰ π ⁻	2.82 %
		Ρ + k ⁺ π ⁻ π ⁻	9.2 %
udud <u>c</u>	udu (p)+d <u>c</u> (D-)	P + k ⁰ π ⁻	2.82 %
		Ρ + k ⁺ π ⁻ π ⁻	9.2 %
	udd (n)+u <u>c</u> (<u>D</u> ⁰)	$n + k^0 \pi^{0} (k^+ \pi^{-})$	2.3 % (3.8 %)
		n + k ⁰ π ⁻ π ⁺	5.97 %

Rough estimate of events at RHIC

Final state	Decay mode	Final states	Branching ratio
udud <u>c</u>	udu (p)+d <u>c</u> (D-) p + k ⁰ π ⁻	P + k ⁺ π ⁻ π ⁻	2.82 % 9.2 %
	udd (n)+u <u>c (D</u> 0)	$n + k^0 \pi^{0} (k^+ \pi^{-})$	2.3 % (3.8 %)
		n + k ⁰ π ⁻ π ⁺	5.97 %

Central collision (0-10%) $dN_{\Theta c} / dy = dN_D / dy \times \exp[-m_p / T] \times \text{Branching ratio}$ $dN_{cc}/dy = 2.2 \text{ (phenix)}$ $= 2.2 \times \frac{1}{148} \times 0.03 = 0.00045$

Possible Decay mode of Tetra-quark

exotic	Decay mode	Final states	Branching ratio
us <u>cc</u>	u <u>c</u> (<u>D</u> ⁰)+s <u>c</u> (Ds-)	<u>D</u> ⁰ (k ⁰ π ⁰ , k ⁺ π ⁻ k ⁰ π ⁻ π ⁺) Ds-(<u>k⁰</u> k ^{- ,} k ⁻ k ⁺ π ⁻)	3.6 % (4.4 %)
ud <u>cc</u>	d <u>c</u> (D-)+u <u>c</u> (<u>D</u> ⁰)	$D - (k^{0} \pi^{-1} k^{+} \pi^{-} \pi^{-}) + \frac{D^{0} (k^{0} \pi^{0}, k^{+} \pi^{-} k^{0} \pi^{-} \pi^{+})}{k^{0} \pi^{-} \pi^{+}}$	

Who can do it : STAR collaboration?

PRL 94, 062301 (2005)

PHYSICAL REVIEW LETTERS

week ending 18 FEBRUARY 2005

Open Charm Yields in d + Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

 $D^{0} \rightarrow k^{-}\pi^{+}$

FIG. 1: (a) Invariant mass distributions of kaon-pion pairs from d+Au collisions. The solid circles depict the signal after mixed-event background subtraction, the open circles after subtraction of the residual background using a linear parametrization. (b) dE/dx in the TPC vs. particle momentum (p) with a TOF cut of $|1/\beta - 1| \leq 0.03$. Insert: projection on the dE/dx axis for particle momenta 1 GeV/c.

$$D^+ \rightarrow \overline{k}^0 \pi^+$$

Who can do it : FAIR ?

Summary

- 1. While controvery exist over light pentaquark, Many Theories consistently predict bound heavy pentaquark
- 2. Quark model also predict metastable tetraquark

3. RHIC can be a very useful exotic factory
 → If found the first exotic ever, will tell us about QCD and dense matter → color superconductivity

References

- Experiments
- T. Nakano, Phys. Rev. Lett. 91 (03) 012002.
- K.~H.~Hicks, Prog. Part. Nucl. Phys. 55 (05) 647.
- Skyrme model controversy
- T.D.Cohen, Phys. Lett. B 581 (04) 175
- H. Walliser and H. Weigel, Eur. Phys. J. A 26 (05) 361.
- D.Diakonov, V.Petrov and M.V.Polyakov, Z. Phys.A 359 (97) 305
- Theory
- H. J. Lipkin, Phys. Lett. B 195 (87) 484.
- Fl. Stancu, Phys. Rev. D 58 (98) 111501.
- D. O. Riska, N. N. Scoccola, Phys. Lett. B 299 (93) 338.
- Y.Oh, B.Y. Park, D.P. Min, Phys. Lett. B 331 (94) 362. Phys. Rev. D 50 (94) 3350.
- R.L.Jaffe, F.Wilczek, Phys. Rev.Lett. 91(2003) 232003.
- present work
- H. Kim, Y. Oh, S.H.Lee, PLB 595 (04) 293:
- Y. Sarac, H.Kim, S.H.Lee, PRD 73 (06) 014009
- S.H.Lee, Y. Kown, Y. Kown, PRL 96 (06) 102001