Meson Spectroscopy in Ultra-Peripheral Heavy-Ion Collisions at STAR

Boris Grube

Pusan National University Department of Physics Busan, Republic of Korea

Heavy Ion Meeting KIAS, Seoul, 14th September 2006

PUSAN NATIONAL UNIVERSITY

Outline

Introduction

- Ultra-peripheral heavy-ion collisions
- Vector meson production in UPC
- Proof of principle ρ production in UPC at STAR

2 Higher Quarkonia and Exotic mesons

- Exotics defined
- Experimental evidence for light exotic mesons
- The ρ' meson(s)

Meson spectroscopy at STAR

- ρ' cross section measurement
- Future plans search for exotics

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Jltra-peripheral heavy-ion collisions //ector meson production in UPC Proof of principle — ρ production in UPC at STAR

Outline

Introduction

- Ultra-peripheral heavy-ion collisions
- Vector meson production in UPC
- Proof of principle ρ production in UPC at STAR

2 Higher Quarkonia and Exotic mesons

- Exotics defined
- Experimental evidence for light exotic mesons
- The ρ' meson(s)

3 Meson spectroscopy at STAR

- ρ' cross section measurement
- Future plans search for exotics

Introduction luarkonia and Exotic mesons

Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Ultra-Peripheral Heavy-Ion Collisions (UPC)

- Nuclei "miss" each other geometrically: b > R₁ + R₂
- No nucleon-nucleon collisions
- Interaction via long range fields
- Nuclei stay (nearly) intact

- Strong electromagnetic fields ($\propto Z^2$) act for very short time
- High intensity beam of quasi-real virtual photons
- Photon exchange, photon-photon or photon-nucleus interactions
- Nuclear Coulomb excitation, *e*⁺*e*⁻ pair and meson production, and vector meson production

This talk: vector meson production in photonuclear interactions

Introduction gher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Ultra-Peripheral Heavy-Ion Collisions (UPC)

- Nuclei "miss" each other geometrically: b > R₁ + R₂
- No nucleon-nucleon collisions
- Interaction via long range fields
- Nuclei stay (nearly) intact

- Strong electromagnetic fields ($\propto Z^2$) act for very short time
- High intensity beam of quasi-real virtual photons
- Photon exchange, photon-photon or photon-nucleus interactions
- Nuclear Coulomb excitation, *e*⁺*e*⁻ pair and meson production, and vector meson production

This talk: vector meson production in photonuclear interactions

Introduction gher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Ultra-Peripheral Heavy-Ion Collisions (UPC)

- Nuclei "miss" each other geometrically: b > R₁ + R₂
- No nucleon-nucleon collisions
- Interaction via long range fields
- Nuclei stay (nearly) intact

- Strong electromagnetic fields ($\propto Z^2$) act for very short time
- High intensity beam of quasi-real virtual photons
- Photon exchange, photon-photon or photon-nucleus interactions
- Nuclear Coulomb excitation, *e*⁺*e*⁻ pair and meson production, and vector meson production

This talk: vector meson production in photonuclear interactions

Vector Meson Production in UPC

- Vector dominance: γ^* from "spectator" ion fluctuates into $q\bar{q}$ pair
- *qq* pair scatters elastically off "target" nucleus into real vector meson

Photon is diffractively excited to a vector meson

- Flux of γ^* described by Weizsäcker-Williams approximation
- Photon spectrum: $dN / dk \propto Z^2 / k$
- Maximum photon energy in lab frame: $\omega_{\text{max}}^{\text{LF}} \approx \gamma \hbar c / R_A \approx 3 \text{ GeV} (\text{RHIC}), 100 \text{ GeV} (\text{LHC})$
- In rest frame of target nucleus: $\omega_{\text{max}}^{\text{target}} \approx (2\gamma^2 - 1)\hbar c/R_A \approx 600 \text{ GeV} (\text{RHIC}), 500 \text{ TeV} (\text{LHC})$
- Much higher energies than in fixed target experiments
- Diffraction is dominated by Pomeron exchange

Vector meson production in photon-Pomeron fusion

Vector Meson Production in UPC

- Vector dominance: γ^* from "spectator" ion fluctuates into $q\bar{q}$ pair
- *qq* pair scatters elastically off "target" nucleus into real vector meson

Photon is diffractively excited to a vector meson

- Flux of γ^* described by Weizsäcker-Williams approximation
- Photon spectrum: $dN / dk \propto Z^2 / k$
- Maximum photon energy in lab frame: $\omega_{\text{max}}^{\text{LF}} \approx \gamma \hbar c / R_A \approx 3 \text{ GeV} (\text{RHIC}), 100 \text{ GeV} (\text{LHC})$
- In rest frame of target nucleus: $\omega_{\text{max}}^{\text{target}} \approx (2\gamma^2 - 1)\hbar c/R_A \approx 600 \text{ GeV} (\text{RHIC}), 500 \text{ TeV} (\text{LHC})$
- Much higher energies than in fixed target experiments
- Diffraction is dominated by Pomeron exchange

Vector meson production in photon-Pomeron fusion

Meson Spectroscopy in Ultra-Peripheral Heavy-Ion Collisions at STAR

Vector Meson Production in UPC

- Vector dominance: γ^* from "spectator" ion fluctuates into $q\bar{q}$ pair
- *qq* pair scatters elastically off "target" nucleus into real vector meson

Photon is diffractively excited to a vector meson

- Flux of γ^* described by Weizsäcker-Williams approximation
- Photon spectrum: $dN / dk \propto Z^2 / k$
- Maximum photon energy in lab frame: $\omega_{\text{max}}^{\text{LF}} \approx \gamma \hbar c / R_A \approx 3 \text{ GeV} (\text{RHIC}), 100 \text{ GeV} (\text{LHC})$
- In rest frame of target nucleus: $\omega_{\text{max}}^{\text{target}} \approx (2\gamma^2 - 1)\hbar c/R_A \approx 600 \text{ GeV} (\text{RHIC}), 500 \text{ TeV} (\text{LHC})$
- Much higher energies than in fixed target experiments
- Diffraction is dominated by Pomeron exchange

Vector meson production in photon-Pomeron fusion

Meson Spectroscopy in Ultra-Peripheral Heavy-Ion Collisions at STAR

Vector Meson Production in UPC

- Vector dominance: γ^* from "spectator" ion fluctuates into $q\bar{q}$ pair
- *qq* pair scatters elastically off "target" nucleus into real vector meson

Photon is diffractively excited to a vector meson

- Flux of γ^* described by Weizsäcker-Williams approximation
- Photon spectrum: $dN / dk \propto Z^2 / k$
- Maximum photon energy in lab frame: $\omega_{\text{max}}^{\text{LF}} \approx \gamma \hbar c / R_A \approx 3 \text{ GeV} (\text{RHIC}), 100 \text{ GeV} (\text{LHC})$
- In rest frame of target nucleus: $\omega_{\text{max}}^{\text{target}} \approx (2\gamma^2 - 1)\hbar c/R_A \approx 600 \text{ GeV} (\text{RHIC}), 500 \text{ TeV} (\text{LHC})$
- Much higher energies than in fixed target experiments
- Diffraction is dominated by Pomeron exchange

Vector meson production in photon-Pomeron fusion

Introduction Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Vector Meson Production in UPC

Coherent photon-Pomeron fusion

- Large cross section for coherent coupling of *γ*^{*} and ℙ to extended charge ⇒ λ_{γ,ℙ} > R_A
- Coherence condition from uncertainty principle:
 - Experimental signature: low transverse momentum $p_T < \hbar c/R_A$ $p_T \approx 30$ MeV/*c* for $R_A(Au) \approx 7$ fm
 - Longitudinal momentum $p_{\parallel} < \gamma \hbar / R_A \approx 3 \text{ GeV/}c$ for $\gamma \approx 100$
- High photon flux + coherent scattering
 ⇒ large cross sections for vector meson production
 • E.g. σ(ρ) ≈ 590 mb at RHIC, 5.2 b at LHC
- Relativistic heavy ion colliders are vector meson factories
- Study of C-odd mesons in photon-Pomeron fusion

Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Vector Meson Production in UPC

Coherent photon-Pomeron fusion

- Large cross section for coherent coupling of *γ*^{*} and ℙ to extended charge ⇒ λ_{γ,ℙ} > R_A
- Coherence condition from uncertainty principle:
 - Experimental signature: low transverse momentum $p_T < \hbar c / R_A$ $p_T \approx 30$ MeV/*c* for $R_A(Au) \approx 7$ fm
 - Longitudinal momentum $p_{\parallel} < \gamma \hbar / R_A \approx 3$ GeV/c for $\gamma \approx 100$
- High photon flux + coherent scattering
 - \implies large cross sections for vector meson production
 - E.g. $\sigma(\rho) \approx 590 \,\mathrm{mb}$ at RHIC, 5.2 b at LHC
- Relativistic heavy ion colliders are vector meson factories
- Study of C-odd mesons in photon-Pomeron fusion

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

The STAR Experiment

Magnetic Field : 0.5 T

Boris Grube Meson Spectroscopy in Ultra-Peripheral Heavy-Ion Collisions at STAR

Introduction Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Proof of Principle — ρ Production in UPC at STAR

Exclusive $\rho(770)$ production in coherent photon-Pomeron fusion S. Klein *et al.* PRL **89**, 272302 (2002)

Introduction Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

Proof of Principle — ρ Production in UPC at STAR

Exclusive $\rho(770)$ production in coherent photon-Pomeron fusion S. Klein *et al.* PRL **89**, 272302 (2002)

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Experimental signature

Challenging trigger

- 2 oppositely charged tracks with vertex
- Low total *p_T*
- Back-to-back in transverse plane

Trigger: Topology requirement in central trigger barrel (CTB)

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Experimental signature

Challenging trigger

- 2 oppositely charged tracks with vertex
- Low total *p*_T
- Back-to-back in transverse plane

Trigger: Topology requirement in central trigger barrel (CTB)

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Experimental signature

- High photon flux: multiple interactions between single ion pair
- Nuclear excitation into giant dipole resonance (GDR), independent of vector meson production
- GDR decays via neutron emission ⇒ detection with zero degree calorimeters (ZDC) ⇒ tagging of UPC

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Experimental signature

- High photon flux: multiple interactions between single ion pair
- Nuclear excitation into giant dipole resonance (GDR), independent of vector meson production
- GDR decays via neutron emission ⇒ detection with zero degree calorimeters (ZDC) ⇒ tagging of UPC

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Experimental signature

- High photon flux: multiple interactions between single ion pair
- Nuclear excitation into giant dipole resonance (GDR), independent of vector meson production
- GDR decays via neutron emission ⇒ detection with zero degree calorimeters (ZDC) ⇒ tagging of UPC

Introduction gher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Results

 $\int
ho$ production with nuclear excitation in Au imes Au @ $\sqrt{s_{NN}}=$ 130 GeV

p_T^{ρ} spectrum

Rapidity distribution

$d\sigma(ho)/dM_{\pi\pi}$

- Total cross section: σ_{tot} =

 (460 ± 220_{stat}, ± 110_{sys}.) mb
 S. Klein *et al.* PRL 89, 272302 (2002)
- Theoretical prediction: $\sigma_{\rm tot} = 350 \, {\rm mb}$

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Results

ho production with nuclear excitation in Au imes Au @ $\sqrt{s_{NN}}$ = 130 GeV

Rapidity distribution

- Total cross section: σ_{tot} =

 (460 ± 220_{stat}, ± 110_{sys}.) mb
 S. Klein *et al.* PRL 89, 272302 (2002)
- Theoretical prediction: $\sigma_{\rm tot} = 350 \, {\rm mb}$

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Results

$\int ho$ production with nuclear excitation in Au imes Au @ $\sqrt{s_{NN}}=$ 130 GeV

- Total cross section: $\sigma_{tot} = (460 \pm 220_{stat.} \pm 110_{sys.}) \text{ mb}$ S. Klein *et al.* PRL **89**, 272302 (2002)
- Theoretical prediction: $\sigma_{tot} = 350 \text{ mb}$ S. Klein *et al.* PR **C60**, 014903 (1999)

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Results

$\int ho$ production with nuclear excitation in Au imes Au @ $\sqrt{s_{NN}}=$ 130 GeV

- Total cross section: $\sigma_{tot} = (460 \pm 220_{stat.} \pm 110_{sys.}) \text{ mb}$ S. Klein *et al.* PRL **89**, 272302 (2002)
- Theoretical prediction: $\sigma_{\rm tot} = 350 \, {\rm mb}$ S. Klein *et al.* PR **C60**, 014903 (1999)

Boris Grube

Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR Ultra-peripheral heavy-ion collisions Vector meson production in UPC Proof of principle — ρ production in UPC at STAR

ρ Production in UPC at STAR — Results

ho production with nuclear excitation in Au imes Au @ $\sqrt{s_{NN}}=$ 130 GeV

- Total cross section: $\sigma_{tot} = (460 \pm 220_{stat.} \pm 110_{sys.}) \text{ mb}$ S. Klein *et al.* PRL **89**, 272302 (2002)
- Theoretical prediction: $\sigma_{\rm tot} = 350 \, {\rm mb}$ S. Klein *et al.* PR **C60**, 014903 (1999)

Introduction Higher Quarkonia and Exotic mesons Meson spectroscopy at STAR xotics defined xperimental evidence for light exotic mesons he ρ^{\prime} meson(s)

Outline

Introduction

- Ultra-peripheral heavy-ion collisions
- Vector meson production in UPC
- Proof of principle ρ production in UPC at STAR

2 Higher Quarkonia and Exotic mesons

- Exotics defined
- Experimental evidence for light exotic mesons
- The ρ' meson(s)

Meson spectroscopy at STAR

- ρ' cross section measurement
- Future plans search for exotics

Exotics Defined

Naïve constituent quark model

- Mesons are $|q\bar{q}\rangle$ states
- Total meson spin $\vec{J} = \vec{L} + \vec{S}$, total intrinsic spin $\vec{S} = \vec{s}_q + \vec{s}_{\bar{q}}$
- Parity $P = (-1)^{L+1}$
- *C*-Parity $C = (-1)^{L+S}$ (for neutral $|q\bar{q}\rangle$ states)

Forbidden
$$J^{PC}$$
: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Exotic meson

Has J^{PC} or flavor quantum numbers forbidden for $|q\bar{q}
angle$ states in NRQM

ഹാ

Exotics Defined

Naïve constituent quark model

- Mesons are $|q\bar{q}\rangle$ states
- Total meson spin $\vec{J} = \vec{L} + \vec{S}$, total intrinsic spin $\vec{S} = \vec{s}_q + \vec{s}_{\bar{q}}$

• Parity
$$P = (-1)^{L+1}$$

• *C*-Parity $C = (-1)^{L+S}$ (for neutral $|q\bar{q}\rangle$ states)

Exotic meson

Has J^{PC} or flavor quantum numbers forbidden for $|q\bar{q}
angle$ states in NRQM

NSL.

Exotics Defined

Extension of meson basis states

- Multi-quark states $|q\bar{q}q\bar{q}\rangle$
- States with valence glue $|q\bar{q}g\rangle$
- Bound gluon states $|gg\rangle$
- . . .
- Mesons are linear superpositions of all allowed basis states
- Mixing amplitudes determined by QCD
- Amount of mixing is open question
- Classification into "quarkonia", "hybrids", and "glueballs" assumes dominance of one type of basis state
- Exotic mesons have no $|q\bar{q}
 angle$ component

Exotics Defined

Extension of meson basis states

- Multi-quark states $|q\bar{q}q\bar{q}\rangle$
- States with valence glue $|q\bar{q}g\rangle$
- Bound gluon states $|gg\rangle$
- . . .
- Mesons are linear superpositions of all allowed basis states
- Mixing amplitudes determined by QCD
- Amount of mixing is open question
- Classification into "quarkonia", "hybrids", and "glueballs" assumes dominance of one type of basis state
- Exotic mesons have no $|q\bar{q}
 angle$ component

Exotics Defined

Extension of meson basis states

- Multi-quark states $|q\bar{q}q\bar{q}\rangle$
- States with valence glue $|q\bar{q}g\rangle$
- Bound gluon states $|gg\rangle$
- . . .
- Mesons are linear superpositions of all allowed basis states
- Mixing amplitudes determined by QCD
- Amount of mixing is open question
- Classification into "quarkonia", "hybrids", and "glueballs" assumes dominance of one type of basis state
- Exotic mesons have no $|q\bar{q}\rangle$ component

Exotics Defined

Naming convention for J^{PC} exotics

• Name determined by *I^G* and *PC* E.g.:

$$I^G(J^{PC})$$
 $1^-(0^{-+})$ $0^+(0^{-+})$ $1^-(1^{-+})$ $0^+(1^{-+})$ Name π η $\pi_1(1400)$ $\eta_1(1400?)$ $I^G(J^{PC})$ $1^+(1^{+-})$ $0^-(1^{+-})$ $1^+(2^{+-})$ $0^-(2^{+-})$ Name $b_1(1235)$ $h_1(1170)$ $b_2(200?)$ $h_2(200?)$

Experimental Evidence for Light Exotic Mesons

J^{PC} exotic mesons identified so far

		$= (1376 \pm 17) \text{ MeV/}c^2, \ \Gamma = (300 \pm 40) \text{ MeV}$
		BNL-E852 PRL 79 , 1630 (1997) and PR D60 , 092001 (1999);
		Crystal Barrel PL B423 , 175 (1998) and PL B446 , 349 (1999)
	ρ π	Crystal Barrel NP A721 , 605c (2003); Obelix EPJ C35 , 21 (2004)
		= (1653^{+18}_{-15}) MeV/ c^2 , $\Gamma = (225^{+45}_{-28})$ MeV
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)
	$b_1(1235) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 94, 032002 (2005);
		Crystal Barrel PL B563 , 140 (2003)
		VES NP A663 , 596c (2000); BNL-E852 PRL 86 , 3977 (2001)
	ρπ	VES NP A663 , 596c (2000); BNL-E852 PRL 81 , 5760 (1998) and
		PR D65 , 072001 (2002)
		$pprox$ 2000 MeV/c ² , $\Gamma \approx$ 300 MeV
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)
	$b_1(1235) \pi$	BNL-E852 PRL 94, 032002 (2005)

Experimental Evidence for Light Exotic Mesons

J^{PC} e	J^{PC} exotic mesons identified so far					
0	$\pi_1(1400): m$	= $(1376 \pm 17) \text{ MeV/}c^2$, $\Gamma = (300 \pm 40) \text{ MeV}$				
	η π	BNL-E852 PRL 79, 1630 (1997) and PR D60, 092001 (1999);				
		Crystal Barrel PL B423, 175 (1998) and PL B446, 349 (1999)				
	$ ho \pi$	Crystal Barrel NP A721, 605c (2003); Obelix EPJ C35, 21 (2004)				
		= (1653^{+18}_{-15}) MeV/ c^2 , $\Gamma = (225^{+45}_{-28})$ MeV				
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)				
	$b_1(1235) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 94, 032002 (2005);				
		Crystal Barrel PL B563 , 140 (2003)				
		VES NP A663, 596c (2000); BNL-E852 PRL 86, 3977 (2001)				
	ρπ	VES NP A663, 596c (2000); BNL-E852 PRL 81, 5760 (1998) and				
		PR D65 , 072001 (2002)				
		$pprox$ 2000 MeV/ c^2 , $\Gamma pprox$ 300 MeV				
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)				
	$b_1(1235) \pi$	BNL-E852 PRL 94, 032002 (2005)				

Experimental Evidence for Light Exotic Mesons

I^{PC} exotic mesons identified so far

1	$\pi_1(1400): m$	= $(1376 \pm 17) \text{ MeV/}c^2$, $\Gamma = (300 \pm 40) \text{ MeV}$
	η π	BNL-E852 PRL 79, 1630 (1997) and PR D60, 092001 (1999);
		Crystal Barrel PL B423, 175 (1998) and PL B446, 349 (1999)
	$ ho \pi$	Crystal Barrel NP A721, 605c (2003); Obelix EPJ C35, 21 (2004)
2	$\pi_1(1600): m$	= (1653^{+18}_{-15}) MeV/ c^2 , $\Gamma = (225^{+45}_{-28})$ MeV
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)
	$b_1(1235) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 94, 032002 (2005);
		Crystal Barrel PL B563 , 140 (2003)
	$\eta'(958) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 86, 3977 (2001)
	ρ π	VES NP A663, 596c (2000); BNL-E852 PRL 81, 5760 (1998) and
		PR D65 , 072001 (2002)
		$pprox$ 2000 MeV/ c^2 , $\Gamma pprox$ 300 MeV
	$f_1(1285) \pi$	
		BNL-E852 PRL 94, 032002 (2005)

Experimental Evidence for Light Exotic Mesons

I^{PC} exotic mesons identified so far

0	$\pi_1(1400): m$	= $(1376 \pm 17) \text{ MeV/}c^2$, $\Gamma = (300 \pm 40) \text{ MeV}$
	η π	BNL-E852 PRL 79, 1630 (1997) and PR D60, 092001 (1999);
		Crystal Barrel PL B423, 175 (1998) and PL B446, 349 (1999)
	$ ho \pi$	Crystal Barrel NP A721, 605c (2003); Obelix EPJ C35, 21 (2004)
2	$\pi_1(1600): m$	= (1653^{+18}_{-15}) MeV/ c^2 , $\Gamma = (225^{+45}_{-28})$ MeV
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)
	$b_1(1235) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 94, 032002 (2005);
		Crystal Barrel PL B563 , 140 (2003)
	$\eta'(958) \pi$	VES NP A663, 596c (2000); BNL-E852 PRL 86, 3977 (2001)
	ρ π	VES NP A663, 596c (2000); BNL-E852 PRL 81, 5760 (1998) and
		PR D65 , 072001 (2002)
3	$\pi_1(2000): m$	$\approx 2000 \text{ MeV}/c^2$, $\Gamma \approx 300 \text{ MeV}$
	$f_1(1285) \pi$	BNL-E852 PL B595 , 109 (2004)
	$b_1(1235) \pi$	BNL-E852 PRL 94, 032002 (2005)
Exotics defined Experimental evidence for light exotic mesons The ρ^\prime meson(s)

Experimental Evidence for Light Exotic Mesons

J^{PC} exotic mesons identified so far

- $\pi_1(1400)$: $m = (1376 \pm 17) \text{ MeV/}c^2$, $\Gamma = (300 \pm 40) \text{ MeV}$
- **2** $\pi_1(1600): m = (1653^{+18}_{-15}) \text{ MeV/}c^2, \ \Gamma = (225^{+45}_{-28}) \text{ MeV}$
- **③** $\pi_1(2000): m \approx 2000 \text{ MeV/}c^2, \Gamma \approx 300 \text{ MeV}$
 - All states have $I^{G}(J^{PC}) = 1^{-}(1^{-+})$
 - Constituents still unclear
 - $\pi_1(2000)$ might be $|q\bar{q}g\rangle$ state
 - $\pi_1(1400)$ is probably $|q\bar{q}q\bar{q}\rangle$ state

Exotics defined Experimental evidence for light exotic mesons The ρ^\prime meson(s)

Experimental Evidence for Light Exotic Mesons

J^{PC} exotic mesons identified so far

- $\pi_1(1400)$: $m = (1376 \pm 17) \text{ MeV/}c^2$, $\Gamma = (300 \pm 40) \text{ MeV}$
- **2** $\pi_1(1600): m = (1653^{+18}_{-15}) \text{ MeV/}c^2, \ \Gamma = (225^{+45}_{-28}) \text{ MeV}$
- **③** $\pi_1(2000)$: *m* ≈ 2000 MeV/*c*², Γ ≈ 300 MeV
 - All states have $I^{G}(J^{PC}) = 1^{-}(1^{-+})$
 - Constituents still unclear
 - $\pi_1(2000)$ might be $|q\bar{q}g\rangle$ state
 - $\pi_1(1400)$ is probably $|q\bar{q}q\bar{q}\rangle$ state

NSL.

Exotics defined Experimental evidence for light exotic mesons The ρ^\prime meson(s)

Experimental Evidence for Light Exotic Mesons

$\pi_1(1400)$ decay into p-wave $\eta\pi$ system S. U. Chung, E. Klempt, and J. G. Körner EPJ A15, 539 (2002)

- *Assumption*: η meson is pure member of the pion octet
- Bose symmetrization: *p*-wave $\eta \pi$ system belongs to flavor $\mathbf{10} \oplus \overline{\mathbf{10}}$ representation
- Assumption: flavor SU(3) is conserved in π₁(1400) → ηπ

 $\pi_1(1400)$ cannot be hybrid $|qar{q}g
angle$, must be $|qar{q}qar{q}
angle$ state

Exotics defined Experimental evidence for light exotic mesons The ρ^\prime meson(s)

Experimental Evidence for Light Exotic Mesons

$\pi_1(1400)$ decay into p-wave $\eta\pi$ system S. U. Chung, E. Klempt, and J. G. Körner EPJ A15, 539 (2002)

- Assumption: η meson is pure member of the pion octet
- Bose symmetrization: *p*-wave $\eta \pi$ system belongs to flavor $\mathbf{10} \oplus \overline{\mathbf{10}}$ representation
- Assumption: flavor SU(3) is conserved in π₁(1400) → ηπ

 $\pi_1(1400)$ cannot be hybrid $|qar{q}g
angle$, must be $|qar{q}qar{q}
angle$ state

Exotics defined Experimental evidence for light exotic mesons The ρ^\prime meson(s)

Experimental Evidence for Light Exotic Mesons

$\pi_1(1400)$ decay into p-wave $\eta\pi$ system S. U. Chung, E. Klempt, and J. G. Körner EPJ A15, 539 (2002)

- Assumption: η meson is pure member of the pion octet
- Bose symmetrization: *p*-wave $\eta \pi$ system belongs to flavor $\mathbf{10} \oplus \overline{\mathbf{10}}$ representation
- Assumption: flavor SU(3) is conserved in $\pi_1(1400) \rightarrow \eta \pi$

 $\pi_1(1400)$ cannot be hybrid $|qar{q}g
angle$, must be $|qar{q}qar{q}
angle$ state

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV/}c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $\ket{qar{q}g}$ and $\ket{qar{q}qar{q}}$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report
- Flux tube model predicts 1 |qq̃g) ρ-like state below 2.2 GeV/c²
 N. Isgur and J. Paton PR D31, 2910 (198

Additional states + non-qq̄ components in observed resonances

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV/}c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $|q\bar{q}g\rangle$ and $|q\bar{q}q\bar{q}\rangle$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report

• Flux tube model predicts $1 |q\bar{q}g\rangle \rho$ -like state below 2.2 GeV/ c^2 N. Isgur and J. Paton PR D31, 2910 (1985

Additional states + non-qq̄ components in observed resonances

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV/}c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $|q\bar{q}g\rangle$ and $|q\bar{q}q\bar{q}\rangle$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report

• Flux tube model predicts $1 |q\bar{q}g\rangle \rho$ -like state below 2.2 GeV/ c^2 N. Isgur and J. Paton PR D31, 2910 (1985

Additional states + non-qq̄ components in observed resonances

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV}/c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $|q\bar{q}g\rangle$ and $|q\bar{q}q\bar{q}\rangle$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report
- Flux tube model predicts $1 |q\bar{q}g\rangle \rho$ -like state below 2.2 GeV/ c^2 N. Isgur and J. Paton PR **D31**, 2910 (198

Additional states + non-qq components in observed resonances

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV/}c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $|q\bar{q}g\rangle$ and $|q\bar{q}q\bar{q}\rangle$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report
- Flux tube model predicts $1 |q\bar{q}g\rangle \rho$ -like state below 2.2 GeV/ c^2 N. Isgur and J. Paton PR **D31**, 2910 (1985)

Additional states + non-qq components in observed resonances

The ρ^\prime meson(s)

Excited ρ states

• PDG: 2 poorly known states:

•
$$\rho(1450)$$
: $m = (1459 \pm 11) \text{ MeV}/c^2$, $\Gamma = (147 \pm 40) \text{ MeV}$

- $\rho(1700)$: $m = (1720 \pm 20) \text{ MeV/}c^2$, $\Gamma = (250 \pm 100) \text{ MeV}$
- Quark models predict 5 $|q\bar{q}\rangle$ ρ -like meson states below 2.2 GeV/ c^2 S. Godfrey and N. Isgur, PR D32, 189 (1985)

Inclusion of possible $|q\bar{q}g\rangle$ and $|q\bar{q}q\bar{q}\rangle$ states

- If $\pi_1(1400)$ member of $\mathbf{10} \oplus \overline{\mathbf{10}} \implies \rho(1400)$, $J^{PC} = 1^{--}$ partner
- Full account of $J^{PC} = 1^{--}$ and $1^{-+} |q\bar{q}q\bar{q}\rangle$ "vector" mesons \implies 2 sets of supermultiplets with 81 members each: 7 ρ -like states S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report
- Flux tube model predicts $1 |q\bar{q}g\rangle \rho$ -like state below 2.2 GeV/ c^2 N. Isgur and J. Paton PR D31, 2910 (1985)

Additional states + non- $q\bar{q}$ components in observed resonances

' cross section measurement Future plans — search for exotics

Outline

Introduction

- Ultra-peripheral heavy-ion collisions
- Vector meson production in UPC
- Proof of principle ρ production in UPC at STAR
- Pigher Quarkonia and Exotic mesons
 - Exotics defined
 - Experimental evidence for light exotic mesons
 - The ρ' meson(s)

Meson spectroscopy at STAR

- ρ' cross section measurement
- Future plans search for exotics

 ρ' cross section measurement Future plans — search for exotics

ρ' Production in UPC — Experimental Signature

 ρ' production in coherent photon-Pomeron fusion with nuclear excitation

Signature

- 4 charged tracks with $\sum_{\text{tracks}} Q = 0$ and $\sum_{\text{tracks}} p_T < 150 \text{ MeV/}c$
- Neutron hits in ZDC \implies tagging of UPC

Meson spectroscopy at STAR

 ρ' cross section measurement

ρ' Production in UPC — Experimental Signature

 ρ' production in coherent photon-Pomeron fusion with nuclear excitation

• Neutron hits in ZDC \implies tagging of UPC

 ρ' cross section measurement Future plans — search for exotics

ρ' Production in UPC — Results from Pilot Run

${ m Au} imes { m Au} @ \sqrt{s_{NN}} =$ 200 GeV : 3.9 M 4-prong events ${ m Byoung-Chul}$ Kim, PNU

Inv. Mass of Neutral Quads(sumPt<0.15) QuadMass SumPt of Neutral Quads QuadPt Entries 100 رد 18 16//2 Mean 1.578 Mean 0.2777 RMS 0.281 RMS 0.1776 25.67/31 6 906 + 0 605 p1 0 3200 + 0 0441 1.512 ± 0.019 1.2 1.4 1.6 1.8 2 p_[GeV/c] m____ [GeV/c²]

• 123 $\rho': m = (1510 \pm 20) \text{ MeV/}c^2, \Gamma = (330 \pm 45) \text{ MeV}$

• Hardware problem in trigger detector, not recognized during run

Run 7 Au \times Au @ $\sqrt{s_{NN}}$ = 200 GeV : Measurement of ρ' cross section

• Expect to see $\approx 300 \rho' \implies$ precision $\Delta \sigma / \sigma \approx 10 \%$

 ρ' cross section measurement Future plans — search for exotics

ρ' Production in UPC — Results from Pilot Run

${\sf Au} imes {\sf Au} @ \sqrt{s_{NN}} =$ 200 GeV : 3.9 M 4-prong events ${\sf Byoung-Chul}$ Kim, PNU

SumPt of Neutral Quads Inv. Mass of Neutral Quads(sumPt<0.15) QuadMass QuadPt Entries 100 ~ົວ18 ໄລ້ Mean 1.578 Mean 0.2777 RMS 0.281 RMS 0.1776 25.67 / 31 6 906 + 0 605 3200 + 0 0441 1.512 ± 0.019 1.2 1.4 1.6 1.8 2 p_[GeV/c] m_***** [GeV/c²]

- 123 ρ' : $m = (1510 \pm 20) \text{ MeV/}c^2$, $\Gamma = (330 \pm 45) \text{ MeV}$
- Hardware problem in trigger detector, not recognized during run

Run 7 Au \times Au @ $\sqrt{s_{NN}}$ = 200 GeV : Measurement of ρ' cross section

• Expect to see $\approx 300 \rho' \implies$ precision $\Delta \sigma / \sigma \approx 10 \%$

 ρ' cross section measurement Future plans — search for exotics

ρ' Production in UPC — Results from Pilot Run

${\sf Au} imes {\sf Au} @ \sqrt{s_{NN}} =$ 200 GeV : 3.9 M 4-prong events ${\sf Byoung-Chul}$ Kim, PNU

- 123 $\rho': m = (1510 \pm 20) \text{ MeV/}c^2, \Gamma = (330 \pm 45) \text{ MeV}$
- Hardware problem in trigger detector, not recognized during run

Run 7 Au × Au @ $\sqrt{s_{NN}}$ = 200 GeV : Measurement of ρ' cross section

• Expect to see $\approx 300 \rho' \implies$ precision $\Delta \sigma / \sigma \approx 10 \%$

Star Upgrades for 2009

Time of Flight (ToF) Detector

- Replaces central trigger barrel
- Multi-gap resistive plate chambers (MRPC) using ALICE technology
- 23 000 channels (6 slats × 32 plates × 120 trays)
- Full coverage of TPC acceptance (2π in ϕ , $|\eta| < 1$)
- Intrinsic time resolution $\approx 85 \, \mathrm{ps}$

Upgrade of data acquisition (DAQ)

- New TPC front-end electronics based on ALICE's ALTRO chip
- Will permit trigger rates $O(1 \text{ kHz}) \implies DAQ1000$
- Online filter for event pre-selection

Star Upgrades for 2009

Time of Flight (ToF) Detector

- Replaces central trigger barrel
- Multi-gap resistive plate chambers (MRPC) using ALICE technology
- 23 000 channels (6 slats × 32 plates × 120 trays)
- Full coverage of TPC acceptance (2π in ϕ , $|\eta| < 1$)
- Intrinsic time resolution $\approx 85 \, \mathrm{ps}$

Upgrade of data acquisition (DAQ)

- New TPC front-end electronics based on ALICE's ALTRO chip
- Will permit trigger rates $O(1 \text{ kHz}) \implies DAQ1000$
- Online filter for event pre-selection

 ρ' cross section measurement Future plans — search for exotics

Meson Spectroscopy in Ultra-Peripheral Heavy-Ion Collisions at STAR

Future Au \propto Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Exclusive ρ' production in coherent photon-Pomeron fusion

Challenging trigger

- 4 charged tracks with $\sum_{\text{tracks}} Q = 0$ and $\sum_{\text{tracks}} p_T < 150 \text{ MeV/}c$
- No information on interacting beam particles

 ρ' cross section measurement Future plans — search for exotics

Future Au \times Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Exclusive ρ' production in coherent photon-Pomeron fusion

Challenging trigger

- 4 charged tracks with $\sum_{\text{tracks}} Q = 0$ and $\sum_{\text{tracks}} p_T < 150 \text{ MeV/}c$
- No information on interacting beam particles

 ρ^\prime cross section measurement Future plans — search for exotics

Future Au \propto Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

- $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π^-
- $\sigma[\pi^- p \to a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \to \pi^- p]$
- *Speculation*: diffractive dissociation of $\rho'(1600...1800)$ might produce other Γ^{PC} states at %-level

Combination of $\rho(770)[1^{--}]$ with $f_{\rm 0}(600)[0^{++}$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

- $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π
- $\sigma[\pi^- p \rightarrow a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \rightarrow \pi^- p]$

• *Speculation*: diffractive dissociation of $\rho'(1600...1800)$ might

produce other *J^{PC}* states at %-level

Combination of $\rho(770)[1^{--}]$ with $f_{\rm 0}(600)[0^{++}$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

- $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π^-
- $\sigma[\pi^- p \rightarrow a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \rightarrow \pi^- p]$

V. Flaminio *et al.* CERN-HERA **83-01** (1983)

Speculation: diffractive dissociation of ρ'(1600...1800) might produce other J^{PC} states at %-level

Combination of $\rho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

- $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π^-
- $\sigma[\pi^- p \to a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \to \pi^- p]$ V. Flaminio *et al.* CERN-HERA **83-01** (1983)
- *Speculation*: diffractive dissociation of ρ'(1600...1800) might produce other J^{PC} states at %-level

Combination of $\rho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

• $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π^-

•
$$\sigma[\pi^- p \to a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \to \pi^- p]$$

V. Flaminio *et al.* CERN-HERA **83-01** (1983)

Speculation: diffractive dissociation of ρ'(1600...1800) might produce other J^{PC} states at %-level

Combination of $\rho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Large ρ' sample

Expect to see other heavy mesons produced through diffractive dissociation of *ρ*(770) "beam"

Analogy: diffractive production of $a_1^-(1260)$ in $\pi^- p$ interactions

• $a_1^-(1260)$ with $J^{PC} = 1^{++}$ formed by $\pi^-[0^-]$ and Pomeron $f_0(600)[0^{++}]$ in *p*-wave \implies first diffractive excitation of π^-

•
$$\sigma[\pi^- p \to a_1^-(1260) p] \approx 4.3 \% \text{ of } \sigma[\pi^- p \to \pi^- p]$$

V. Flaminio *et al.* CERN-HERA **83-01** (1983)

• *Speculation*: diffractive dissociation of $\rho'(1600...1800)$ might produce other J^{PC} states at %-level

Combination of $ho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \to b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Future Au \propto Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Combination of $\rho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

- *s*-wave: $[\rho f_0]_s \to \rho(1600...1800)$
- *p*-wave: $[\rho f_0]_p \rightarrow b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Simultaneous production of exotic $I^G(J^{PC}) = 1^+(0^{+-})$ and $1^+(2^{+-})$ mesons through diffractive dissociation expected

• Non-exotic *b*₁[1⁺⁻] expected to be suppressed due to parity conservation

S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report

Search for exotic mesons using partial-wave analysis

- Mass region $1.2...1.8 \text{ GeV}/c^2$
- Required statistics $\gtrsim 10\,000\,4$ -prongs
- First MC simulations \implies seems feasible

Byoung-Chul Kim, PNU

Future Au \propto Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Combination of $\rho(770)[1^{--}]$ with $f_0(600)[0^{++}]$

• *s*-wave:
$$[\rho f_0]_s \to \rho(1600...1800)$$

• *p*-wave: $[\rho f_0]_p \rightarrow b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$

Simultaneous production of exotic $I^G(J^{PC}) = 1^+(0^{+-})$ and $1^+(2^{+-})$ mesons through diffractive dissociation expected

• Non-exotic *b*₁[1⁺⁻] expected to be suppressed due to parity conservation

S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report

Search for exotic mesons using partial-wave analysis

- Mass region $1.2...1.8 \text{ GeV}/c^2$
- Required statistics $\gtrsim 10\,000\,4$ -prongs
- First MC simulations \implies seems feasible

Byoung-Chul Kim, PNU

~~~

# Future Au $\propto$ Au @ $\sqrt{s_{NN}}$ = 200 GeV Runs (2009+)

Combination of  $\rho(770)[1^{--}]$  with  $f_0(600)[0^{++}]$ 

• *s*-wave: 
$$[\rho f_0]_s \to \rho(1600...1800)$$

• *p*-wave:  $[\rho f_0]_p \rightarrow b_0(2000?)[0^{+-}], b_1(1235)[1^{+-}], b_2(2000?)[2^{+-}]$ 

Simultaneous production of exotic  $I^G(J^{PC}) = 1^+(0^{+-})$  and  $1^+(2^{+-})$ mesons through diffractive dissociation expected

Non-exotic *b*<sub>1</sub>[1<sup>+-</sup>] expected to be suppressed due to parity conservation

S.U. Chung, "Meson Production in Photon-Pomeron Fusion Processes", BNL Report

#### Search for exotic mesons using partial-wave analysis

- Mass region  $1.2...1.8 \text{ GeV/}c^2$
- Required statistics  $\gtrsim 10\,000\,4$ -prongs
- First MC simulations  $\implies$  seems feasible

Byoung-Chul Kim, PNU

# Conclusions

UPCs of heavy ions give access to wide range of physics

Heavy ion machines as high luminosity  $\gamma A$  and  $\gamma \gamma$  colliders

- Meson spectroscopy important sector of QCD
- Photoproduction of open charm, ...
- Test of strong-field QED via *e*<sup>+</sup>*e*<sup>-</sup> pairs
- Multiple vector meson production
- . . .

#### STAR

- First measurement of coherent meson production in UPC
- $\rho$  production in agreement with theoretical models
- Measurement of ρ' in upcoming run
- Potential for discovery of C-odd exotic mesons in future runs

# Conclusions

#### UPCs of heavy ions give access to wide range of physics

#### Heavy ion machines as high luminosity $\gamma A$ and $\gamma \gamma$ colliders

- Meson spectroscopy important sector of QCD
- Photoproduction of open charm, ...
- Test of strong-field QED via *e*<sup>+</sup>*e*<sup>-</sup> pairs
- Multiple vector meson production
- ...

#### STAR

- First measurement of coherent meson production in UPC
- $\rho$  production in agreement with theoretical models
- Measurement of ρ' in upcoming run
- Potential for discovery of C-odd exotic mesons in future runs

# Conclusions

UPCs of heavy ions give access to wide range of physics

Heavy ion machines as high luminosity  $\gamma A$  and  $\gamma \gamma$  colliders

- Meson spectroscopy important sector of QCD
- Photoproduction of open charm, ...
- Test of strong-field QED via *e*<sup>+</sup>*e*<sup>-</sup> pairs
- Multiple vector meson production
- ...

#### STAR

- First measurement of coherent meson production in UPC
- $\rho$  production in agreement with theoretical models
- Measurement of ρ' in upcoming run
- Potential for discovery of C-odd exotic mesons in future runs

### Outline



### 4-Prong Trigger



# 2-Prong Topology Trigger

