Heavy-Ion Meeting (Dec. 16, 2006)

Summary of Quak Matter 2006 -Experimental Part-

Byungsik Hong *Korea University*

This file contains the collection of interesting experimental physics topics presented during the Quark Matter 2006. The priority was completely biased by the speaker's taste.

Hadron Production and Flow

Elliptic flow

Is "perfect liquid" a unique explanation?

Scaling of soft physics

Evidence from HBT and Strangeness production shows that length plays an important role in soft physics.

<u>v₂ of light quarks</u>

When the mass effect removed by m_T -m, only the quark number ratio shows up! Is mass ordering of v_2 at low p_T generated during or after hadronization? Feed-down for pion is visible in p_T , but not in m_T -m, because p_T (daughter) < p_T (parent), but m_T -m(daughter) ~ m_T -m(parent) ... Decay kinematical effect is masked by the p_T to m_T -m transformation.

v₂ of strange hadrons

Early freeze-out effect of multi-strangeness hadrons seen in spectra analysis with radial flow does not show up here in v_2 analysis, this is an indication that v_2 is already built up in early stage. 7

 v_2 of charm quarks

(1) Consistent with c-quark thermalization [Phys.Lett. B595 202-208]
 (2) Large cross section is needed in AMPT ~10 mb [PRC72,024906]
 (3) Resonance state of D & B in sQGP [PRC73,034913]

➔ indicates quark level thermalization & strong coupling

<u>v₁ of charged hadrons</u>

Light Quark Energy Loss

Light quark energy loss

Statistical analysis to make optimal use of data Caveat: R_{AA} folds geometry, energy loss and fragmentation

Energy dependence of R_{AA} (R_{CP})

Steeper initial jet spectra ? Or Color charge dependence ? At same p_T : ~ 3 difference in x_T. Q. Wang and X.N. Wang, PRC 71, 014903 (2005) At 1.5 < p_T < 6 GeV/c: $R_{CP}(p+pbar) > R_{CP}(\pi)$ At p_T > 6 GeV/c, $R_{CP}(p+pbar) \sim R_{CP}(\pi)$ Similar to 200 GeV Au+Au collisions.

Gluon vs quark energy loss

- Protons are expected to have a larger contribution from gluons compared to pions => larger energy loss
- But above $p_T \sim 6 \text{ GeV/c}$ the same suppression pattern !

R_{AA} vs reaction plane

Au+Au collisions at 200GeV (PHENIX)

 $3 < p_T < 5 \text{ GeV/c}$

 $\underline{R}_{\underline{AA}} : \underline{L}_{\underline{\varepsilon}}$ dependence

Little/no energy loss for $L_e < 2 \text{ fm} \Rightarrow$ Formation time effect? V. Pantuev hep-ph/0506095

<u> R_{AA} – energy dependence</u>

Supression (and dN_g/dy) decreases as we go down in energy – consistent with SPS data

Energy dependence of E_{loss}

nucl-ex/0504001

 π^0

 R_{AA} at 4 GeV: smooth evolution with $\sqrt{s_{NN}}$ Data is better described by Non-Abelian energy loss.

Jet Correlations

Punch-through at high p_T

Reaction plane dependence

jet shape w.r.t. the reaction plane geometrical effect of the almond shape This effect itself is a one of v_2 sources, which will be an important effect at LHC. This should also lead different v_2 between bulk and jet.

Softened away-side peak at low p_T

nucl-ex/0611019 (submitted to Phys.Rev.Lett.)

Nearside vs awayside

 $CY = dN^{pair}/d\phi/N^{trig}$

3-Particle Correlations

 $\boldsymbol{\theta}^{*}$: polar angle of the first associated particle,

Correlation Topologies

How to discriminate various possibilities?

Need 3-particle correlation to discriminate different physics mechanisms.

Jet-flow subtraction in Au+Au

Triggered 0-12 %

Diagonal and Off-diagonal structures are suggestive of *conical emission*.

ZDC central 12% Au+Au

<u>Near-side jet</u>

<u>Ridge+jet yield vs centrality</u>

Λ, K⁰_s near-side associated yield vs centrality in <u>Au+Au</u>

Charged hadrons: ridge yield increased vs. N_{part} Λ,K⁰_s both have increase of near-side yield with centrality in Au+Au Λ, K⁰_s: ratio of yields in central Au+Au/d+Au ~ 4-5 ridge yield of K⁰_s < ridge yield of Λ -> "ridge" yield increases with centrality -> "jet" yield is constant vs Npart same yield as in d+Au

Heavy Flavor

J/Ψ in p+p collisions

Gluon fusion dominates (NLO calculations add more complicated diagrams, but still mostly with gluons)

Improved Run-5 pp reference data

J/Ψ in d+Au collisions

 $\sigma_{A} = \sigma_{N} A^{\alpha}$

Data favors weak shadowing & absorption

- With limited statistics difficult to disentangle nuclear effects
- Need another d+Au run!

Not universal vs x_2 as expected for shadowing, but does scale with x_F , why?

- Initial-state gluon energy loss?
- Sudakov suppression (energy conservation)?

J/Ψ in Au+Au collisions

-Survival probability corrected for normal absorption -On the other hand, recent lattice calculations suggest J/ ψ not screened after all. Suppression only via feed-down from screened $\chi_C \& \psi^3$

37

J/Ψ in Au+Au collisions

- Most central collisions suppressed to ~0.2
- Forward suppressed more than mid-rapidity
 - saturation of forward/mid suppression ratio rapidity @ ~0.6 for $N_{part} \ge 100$?
 - trend opposite to that of CNM (solid lines) and comover (dashed) models

J/Ψ in Au+Au collisions

- CNM calculations with shadowing & absorption R. Vogt, nucl-th/0507027
- Present d+Au data probably only constrains absorption to $\sigma_{ABS} \sim 0\text{-}3$ mb

 AuAu suppression is stronger than CNM calculations predict especially for most central mid-rapidity & at forward rapidity

Models w/o regeneration

PHENIX non-photonic electrons

Heavy flavor in Au+Au

nucl-ex/0611018 (submitted to Phys. Rev. Lett.

No suppression at low p_T

Suppression observed for p_T >3.0 GeV/c, smaller than for light quarks.

<u>Heavy quark energy loss and flow</u>

nucl-ex/0611018 (submitted to Phys. Rev. Lett.)

Radiative energy loss only fails to reproduce v_2^{HF} .

Heavy quark transport model has reasonable agreement with both R_{AA} and v_2^{HF} .

Small relaxation time τ or diffusion coefficient D_{HQ} inferred for charm.

Charm quark collectivity

<u>donn</u>cc/dy from p+p to A+A

- D⁰, e^{\pm} , and μ^{\pm} combined fit
 - Advantage: Covers ~95% of cross section
- Mid-rapidity $d\sigma^{NN}_{cc}/dy vs N_{bin}$
 - $\sigma^{\text{NN}}{}_{\text{cc}}$ follows binary scaling
 - Charm production from initial state as expected
- Higher than FONLL prediction in pp collisions.

Discrepancy in total cross section

- FONLL as baseline
 - Large uncertainties due to quark masses, factorization and renormalization scale
- Phenix about a factor of 2 higher but consistent within errors
 - Only electrons but less background
- STAR data about a factor of 5 higher
 - More material but it is the only direct measurement of D-mesons
 - 95% of the total cross section is measured

What about the spectral shape?

- FONLL describes the shape well
- Experiments do not agree to each other
 - Low material in Phenix
 - Less electron background to subtract
 - Direct measurement of Dmesons at STAR and low p_T
- Is this shown only at high-p_T?

Open heavy flavors_EL in Medium

- In vacuum, gluon radiation suppressed at $q < m_Q/E_Q$
 - "dead cone" effect implies lower energy loss (Dokshitzer-Kharzeev, '01)

- energy distribution w dl/dw of radiated gluons suppressed by angle-dependent factor
- Smaller energy loss would probe inside the medium
- Collisional E-loss: $qg \rightarrow qg$, $qq \rightarrow qq$
 - dE/dx \propto ln p small?

Electron R_{AA} from d+Au to Au+Au

- Use of non-photonic electron spectra as proxy for energy loss study
- R_{AA} show increasing suppression from peripheral to central Au+Au
 - First evidence of heavy quark EL
 - Differences between STAR and PHENIX disappear in R_{AA}
- Is it smaller than for light-quark hadrons?
- For various model comparisons, see Suaide's talk
 - Bottom would be more important (larger collisional energy loss and larger dead cone effect)
 - Collisional dissociation (heavy quarks fragment inside the medium and are suppressed by dissociation)

PHENIX nucl-ex/0611018 STAR nucl-ex/0607012

Collisional EL for heavy quarks

- Collisional and radiative energy losses are comparable!

- M.G.Mustafa, Phys.Rev.C72:014905
- A. K. Dutt-Mazumder et al., Phys. Rev. D71:094016, 2005

Should strongly affect heavy quark R_{AA}

e-h azimuthal correlations in pp

What is the fraction of B mesons, B/(D+B)?

<u>B in NP electrons vs p_T</u>

- Non-zero B contribution
- Contribution consistent with FONLL
 - Model dependent (PYTHIA)
 - Depends on kinematics of D and B decay (not on the fragmentation)
- Dominant systematic uncertainty:
 - photonic background rejection efficiency
 - Additional uncertainties under study

<u>More beauty: Y signal in pp</u>

- Large dataset sampled in Run VI
 - Luminosity limited trigger
 - Analyzed 5.6 pb⁻¹, with corrections.
- Measure Υ(1s+2s+3s) dσ/dy at y=0

 $\int \mathfrak{L} dt = 9 \, p b^{-1}$

Mid-rapidity Υ (1s+2s+3s) Cross section

Integrate yield at mid-rapidity: |y|<0.5

- Υ(1s+2s+3s) BR * dσ/dy

 91 ± 28 stat ± 22 syst pb⁻¹ (Preliminary)
- Consistent with NLO pQCD calculations at midrapidity.
- Trigger ready for next run and RHIC II: luminosity limited

Direct Photons

Direct photons

<u>Direct γ R_{AA} at 200 GeV</u>

<u>Direct photons at low p_T</u>

QM 2005: Data consistent with thermal+ NLO pQCD

- pQCD uncertain at low p_T Gordon and Vogelsang Phys. Rev. D48, 3136 (1993)
- Thermal d'Enterria, Perresounko Eur.Phys.J.C46:451-464,2006
- (a) New experimental method for the measurement of direct photons
 - \rightarrow external conversion from beam pipe
- (b) pp and d+Au reference data: work in progress.

Model comparison

16

T

18 20 p_T(GeV/*c*)

In-Medium Effects

Di-lepton invariant mass spectra

- intermediate mass region, dominated by charm decays: suppression towards central collisions, compatible with suppression pattern observed for HF electrons and J/ψ 62
- low mass region: hint of enhancement but uncertainties are large

Nuclear Modification in Charm

 R_{CP} for 1.4 < m_{ee} < 2.8 GeV/c² in Au+Au

inclusive $\omega \rightarrow \pi^0 \gamma$ signal for LH₂ and Nb target

D. Trnka et al., PRL 94 (2005) 192203

difference in line shape of ω signal for proton and nuclear target consistent with $m_{\omega} = m_0 (1 - \alpha \rho/\rho_0)$ for $\alpha = 0.13$

67

Dielectrons in low energy HI collisions

HADES @ GSI

- dielectron excess beyond expectation from decays of long lived mesons
 - total/ η = 2.07 \pm 0.21 \pm 0.38 for 0.17 < m_{ee} < 0.55 GeV/c²

- scaling of excess yield
 DLS: C+C @ 1.04 AGeV
 - total/ η = 6.5 ± 0.5 ± 2.1

excess scales with π⁰, which are produced via baryon resonances (!)

Summary on in-medium effect

	KEK	Jlab	CBELSA/TAPS	CERES	NA 60
8	_	_	mass shift: -14% Γ _ω (ρ=ρ ₀)≈100MeV	_	_
ρ	mass shift: -9% no broadening	no mass shift some broadening	_	broadening favored over density dependent mass shift	no mass shift strong broadening
Φ	mass shift: -4% Γ _φ (ρ ₀)=47MeV	_	_	_	_

current status of in-medium modifications of vector mesons

despite of enormous progress in the experiments no fully consistent picture as yet

Summary of summary

- 1. Hadron production
 - Various scaling phenomena on flow and HBT
- 2. Light quark energy loss
 - Energy, species, and geometry dependences
- 3. Jet and particle correlations
 - Reaction plane dependence
 - Detailed study on the shape of jets
 - Existence of the mach cone established
- 4. Heavy flavor
 - Yield suppression of heavy flavor in central AA is similar to that for light quarks
 - Discrepancy on the cross section still exist
 - First b-production estimated
- 5. In-medium effects
 - Complete suppression of intermediate mass region in central Au+Au collisions at RHIC
 - Mass shift and broadening of light vector mesons are still controversial even experimentally.