Some Topics in Relativistic Heavy Ion Collision

Su Houng Lee Yonsei Univ., Korea

- 1. J. P. Blaizot
- 2. J. Kapusta
- 3. U. A. Wiedemann

J.P. Blaizot Theoretical overview

Towards understanding the quark gluon plasma

Some form of a quark-gluon plasma is produced in ultra-relativistic nucleus-nucleus collisions

Large energy density achieved

Collective behaviour observed

Jet energy loss in matter

Hints of gluon saturation

« Perfect liquid », « sQGP »

Thermodynamical functions go to SB limit as T becomes large

Resummed perturbation

If the internal loop p is

- 1) Hard (T) : normal perturbation
- 2) Soft (gT): resummed propagator and vertex

The infrared behavior strongly depends on the external momenta "k"

$$
D(k) = \dots \int d^4q \frac{1}{(q+k)^2 - m_g^2} \frac{1}{q^2 - m_g^2}
$$

Saturation

 $\overline{7}$

Saturation formula

The growth of the gluon density is governed by non linear evolution equations and eventually « saturates »

Day 1 $@$ LHC: event multiplicity at y=0 PHOBOS, PRC74 (2006) 021901; W. Busza. • generic trends in $dN^{ch}/d\eta$ 1600 5.5 TeV 200 GeV N.Borghini, UAW - extended longitudinal scaling 130 GeV $1400 -$ to appear. $62.4 GeV$ - self-similar trapezoidal shape 19.6 GeV 1200 $rac{5}{3} \times \frac{1000}{800}$ \Rightarrow dN^{ck}/d $\eta\Big|_{\pi=0} \propto \ln \sqrt{s_{NN}}$ • Saturation models predict 600 Armesto, Salgado, Wiedemann, PRL94 (2005) 022002 400 $\left.\frac{1}{N_{\rm part}}\frac{dN^{AA}}{d\eta}\right|_{\eta\sim 0}=N_0\sqrt{s}^\lambda N_{\rm part}^{\frac{1-\delta}{3\delta}}$ 200 -16 -18 -14 -12 -10 -2 0 -6 $\left. dN_{LHC}^{ch} \right/ d\eta \right|_{n=0} \approx 1650$ $\eta' = \eta - y_{beam}$ **Extrapolations to LHC deviate from** Оľ Kharzeev, Levin, Nardi, NPA747 (2005) 609. so-far generic trends in data \Rightarrow $dN_{LHC}^{ch}/d\eta$ _{n-0} \approx 1800 - 2100 Impact for understanding Both consistent with main trends at the dynamical origin of soft physics at RHIC and LHC. $RHC, but ...$

Early stage of nucleus-nucleus collisions

Conventional picture (mean field): Qs sets the scale at Which partons are set free, as well as their typical transverse momentum

$$
k_{T} \approx Q_{s} \qquad \tau \approx Q_{s}^{-1}
$$

Role of fluctuations of Qs ?

Anisotropy of initial momentum distributions may lead to plasma instabilities. Role in thermalization ?

J. Kapusta Theoretical overview

Strongly Interacting Low Viscosity Matter Created in Heavy Ion Collisions

Big Theoretical Motivation!

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

Kovtun, Son, Starinets PRL 94**,** 111601 (2005)

Using the Kubo formula
$$
\eta = \frac{1}{20} \lim_{\omega \to 0} \frac{1}{\omega} \int d^4 x \, e^{i\omega t} \left\langle \left[T_{\text{tracless}}^{ij}(x), T_{\text{tracless}}^{ij}(0) \right] \right\rangle
$$

the low energy absorption cross section for gravitons on black holes, and the black hole entropy formula they found that $\eta/s = 1/4\pi$ and conjectured that this is a universal lower bound.

Atomic and Molecular Systems

 $Tl_{\rm esc}$ $\bar{\nu}$ *s* $\sim I l_{\text{free}}$ η *n l* 1 In classical transport theory $\frac{1}{2} \sim T l_{\text{free}} \bar{v}$ and $l_{\text{free}} \sim$ so that as the density and/or cross section is reduced (dilute gas limit) the ratio gets larger.

In a liquid the particles are strongly correlated. Momentum transport can be thought of as being carried by voids instead of by particles (Enskog) and the ratio gets larger.

H_2O

NIST data

2D Yukawa Systems in the Liquid State

 $\frac{1}{1}$ = Wigner - Seitz radius Coulomb coupling parameter \approx 17 Minimum located at $a^2 = \frac{1}{a}$ 2 $\Gamma = \frac{Q}{I} =$ Coulomb coupling parameter \approx *n aT Q*

Applications to dusty-plasmas and many other 2D condensed matter systems.

Liu & Goree

Relativistic Dissipative Fluid Dynamics

$$
T^{\mu\nu} = -P g^{\mu\nu} + w u^{\mu} u^{\nu} + \Delta T^{\mu\nu}
$$

$$
J_B^{\mu} = n_B u^{\mu} + \Delta J_B^{\mu}
$$

In the Landau-Lifshitz approach u is the velocity of energy transport.

$$
\Delta T^{\mu\nu} = \eta \left(\Delta^{\mu} u^{\nu} + \Delta^{\nu} u^{\mu} \right) + \left(\frac{2}{3} \eta - \zeta \right) H^{\mu\nu} \partial_{\rho} u^{\rho}
$$

In the Landau-Lifshitz approach u is the velocity of energy transport.
\nIn the Landau-Lifshitz approach u is the velocity of energy transport.
\n
$$
\Delta T^{\mu\nu} = \eta \left(\Delta^{\mu} u^{\nu} + \Delta^{\nu} u^{\mu} \right) + \left(\frac{2}{3} \eta - \zeta \right) H^{\mu\nu} \partial_{\rho} u^{\rho}
$$
\n
$$
H^{\mu\nu} \equiv u^{\mu} u^{\nu} - g^{\mu\nu}, \quad \Delta_{\mu} \equiv \partial_{\mu} - u_{\mu} u^{\beta} \partial_{\beta}, \quad Q_{\alpha} \equiv \partial_{\alpha} T - T u^{\rho} \partial_{\rho} u_{\alpha}
$$
\n
$$
\Delta J^{\mu}_{B} = \chi \left(\frac{n_{B} T}{w} \right)^{2} \Delta^{\mu} \left(\frac{\mu_{B}}{T} \right), \quad s^{\mu} = su^{\mu} - \frac{\mu_{B}}{T} \Delta J^{\mu}_{B}
$$
\n
$$
\partial_{\mu} s^{\mu} = \frac{\eta}{2T} \left(\partial_{i} u^{j} + \partial_{j} u^{i} - \frac{2}{3} \delta^{ij} \partial_{k} u^{k} \right)^{2} + \frac{\zeta}{T} \left(\partial_{k} u^{k} \right)^{2} + \frac{\chi}{T^{2}} \left(\partial_{k} T + T \dot{u}_{k} \right)^{2}
$$
\n
$$
H^{HMO6-12 SHLee}
$$

$$
\partial_{\mu} s^{\mu} = \frac{\eta}{2T} \Big(\partial_i u^j + \partial_j u^i - \frac{2}{3} \delta^{ij} \partial_k u^k \Big)^2 + \frac{\zeta}{T} \Big(\partial_k u^k \Big)^2 + \frac{\chi}{T^2} \Big(\partial_k T + T \dot{u}_k \Big)^2
$$

Viscosity smoothes out gradients in temperature, velocity, pressure, etc.

$$
\eta = \frac{2}{3\sigma} \sqrt{\frac{mT}{\pi}} \quad \zeta = 0 \quad \chi = \frac{1}{\sigma} \sqrt{\frac{T}{\pi m}}
$$

Viscous Heating of Expanding Fireballs JK, PRC 24, 2545 (1981)

The nucleon momentum distribution for a Maxwell-Boltzmann (straight line), for a viscous uranium plus uranium expansion, and for a pure hydrodynamical expansion represented by neutron star collisions.

U. A. Wiedemann

Physics opportunities at the LHC

Parton energy loss depends on parton identity

Some famous result for QCD

The probability to radiate a gluon

The probability to radiate a gluon is inversely proportional to its virtuality

$$
dP \propto \frac{1}{-(p_1^2 - p_2^2)} = \frac{1}{k_T^2 + \omega^2(\frac{m^2}{E^2})}
$$

For same energy loss, minium virtuality is larger \rightarrow dead cone

Some form of a quark-gluon plasma is produced in ultra-relativistic nucleus-nucleus collisions

Large energy density achieved

Collective behaviour observed

Jet energy loss in matter

Hints of gluon saturation

« Perfect liquid », « sQGP »