Prospects of the FAIR project

Byungsik Hong Korea University

<u>Contents</u>

- Introduction to FAIR at GSI
- CBM Experiment at FAIR
 - ► Unique Opportunity for the dense matter study
- Summary

Facility for Antiproton and Ion Research

accelerator technical challenges

- rapidly cycling superconducting magnets
- high energy electron cooling

primary beams

- 5x10¹¹/s; 1.5 2 GeV/u; ²³⁸U²⁸⁺
- ~100 1,000 increased intensity
- 4x10¹³/s; 90 GeV; protons
- 10¹⁰/s; ²³⁸U; 35 GeV/u (Ni 45 GeV/u)

secondary beams

- rare isotopes; 1.5 2 GeV/u
- ~10,000 increased intensity
- antiprotons; up to 30 GeV

storage and cooler rings

- beams of rare isotopes
- eA collider
- 10¹¹ stored & cooled antiprotons;
 - 0.8 14.5 GeV

Research Programs at FAIR

Rare isotope beams; nuclear structure and nuclear astrophysics nuclear structure far off stability nucleosynthesis in stars and supernovae

Beams of antiprotons: hadron physics quark-confinement potential search for gluonic matter and hybrids hypernuclei

High-energy nucleus-nucleus collisions: compressed baryonic matter

baryonic matter at the highest densities (neutron stars) phase transitions and critical endpoint in-medium properties of hadrons

Pulsed heavy ion beams: plasma physics matter at high pressure, density and temperature fundamentals of nuclear fusion

Atomic physics and applied research

highly charged atoms low energy antiprotons radiobiology

Accelerator physics

high intensive heavy ion beams rapidly cycling superconducting magnets high energy electron cooling

Nuclear Structure, Astrophysics, Reactions - NuSTAR

Intensive Rare Isotope Beams Produced by In-Flight Projectile Fragmentation/Fission

Hadron Physics with High Energy Antiprotons

Study of the confinement potential with charmonium spectroscopy

Search for gluonic excitations

Search for in-medium modifications of hadron properties

Precision γ-spectroscopy of single and double hypernuclei

Charmonium Spectroscopy

The PANDA Detector

Research Program of CBM

High-energy nucleus-nucleus collisions Study compressed baryonic matter

baryonic matter at the highest densities (neutron stars) phase transitions and in-medium properties of hadrons at extreme conditions

"Strangeness" of dense matter? In-medium properties of hadrons? Compressibility of nuclear matter? Deconfinement at high baryon densities?

Nuclear Phase Diagram

CBM Physics Topics

1. In-medium modifications of hadrons onset of chiral symmetry restoration at high $\rho_{\rm B}$ observables: $\rho, \omega, \phi \rightarrow e^+e^$ open charm production 2. Strangeness in matter (strange matter) enhanced strangeness production observables: K, Λ , Σ , Ξ , Ω 3. Indications for deconfinement at high $\rho_{\rm B}$ anomalous charmonium suppression? observables: J/ψ , D excitation function of flow (softening of EOS)

4. Critical point

observables: event-by-event fluctuations

Diagnostic Signals at Various Stages

Low Mass Vector Mesons to e⁺e⁻ pair

CERES Collaboration: D.Adamova et al., Phys. Rev. Lett. 91 (2003) 042301

Number of pairs for m>0.2 GeV/c2: 180+-48 Ratio Signal/Background: 1/6

Hadronic decay cocktail:

particle ratios taken from thermal model for Pb-Pb
 rapidity and pt distributions from systematics in Pb-Pb

Enhancement: measured pairs/decay cocktail: 5.0 +- 1.3

Strangeness Production

Charm Production

Photons

WA98, Phys. Rev. Lett. 93 (022301), 2004

Feb. 26-28, 2007

Requirements

Very High Beam Intensity ! Large Acceptance ! Large Spill Fraction !

Central collisions	25 AGeV Au+Au	158 AGeV Pb+Pb
J/ψ multiplicity beam intensity	1.5.10 ⁻⁵ 1.10 ⁹ /s	1⋅10 ⁻³ 2⋅10 ⁷ /s
interactions	1.10 ⁷ /s (1%)	2⋅10 ⁶ /s (10%)
central collisions	1.10 ⁶ /s	2.10 ⁵ /s
J/ψ rate	15/s	200/s
BR <i>J/ψ</i> →e⁺e⁻ (μ⁺μ⁻)	0.9/s	12/s
spill fraction	0.8	0.25
acceptance	0.25	≈ 0.1
J/ψ measured	0.17/s	≈ 0.3/s
	\approx 1.10 ⁵ /week	≈ 1.8·10 ⁵ /week

<u>Requirements</u>

Have to measure the displaced vertex with resolution of $\leq 50 \ \mu m$

High Precision on Tracking !

Some hadronic decay modes

 $D^{\pm} (c\tau = 317 \text{ }\mu\text{m}):$ $D^{+} \rightarrow K^{0}\pi^{+} (2.9 \pm 0.26\%)$ $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+} (9 \pm 0.6\%)$

<u>Requirements</u>

Dominant background in e^+e^- invariant mass spectrum: π^0 -Dalitz decay and gamma conversion

Good identification of soft electrons and positrons !

Requirements

data (NA60 presented at QM05)

0.4

0.2

0

0.6

0.8

1

1.2

1.4 M (GeV)

sum of cocktail sources including the p contribution

CBM Detector Proposal

Radiation hard silicon pixel/strip detectors in a magnetic dipole field Electron identification: RICH & TRD & ECAL for the pion suppression up to 10^5 Hadron identification: RPC, RICH Measurements of photons, π^0 , and η : EM calorimeter (ECAL) High speed data acquisition and trigger system (Muon option is under investigation)

Simulation

Central Au+Au at 25A GeV: URQMD + GEANT4

160 p/400 π^{-} /400 π^{+} /44 K⁺/13 K⁻

~600 charged particles in $\pm~25^\circ$

TOF Resistive Plate Chamber

Design goals:

- Time resolution $\leq 80 \text{ ps}$
- Rate capability up to 20 kHz/cm²
- Efficiency > 95 %
- Large area $\approx 100 \text{ m}^2$
- Long term stability

Various options are under investigation:

- Strip vs. pad readout
- Different materials for electrodes

Particle Identification with TOF

Assuming that TOF distance = 10 m and time resolution = 80 ps

Fast RICH

Design goals:

• electron ID for $\gamma > 42$

÷

- e/π discrimination > 100
- hadron blind up to about 6 GeV/c
- low mass mirrors (Be-glass)
- fast UV response detector

URQMD + GEANT4: Au+Au 25 AGeV radiator (40% He + 60% CH_4) ~ 50 rings per event 30-40 photons per ring

Experimental Conditions

Hit rates for 10⁷ minimum bias Au+Au collisions at 25A GeV:

Θ mrad	dis	TRD 1 tance 4	m	TRD 2 distance 6 m		TRD 3 distance 8 m			TOF-RPC distance 10 m			
	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻²	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻²	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻³	rates kHz/ cm²	area m²	N cm ⁻² x 10 ⁻³
50 – 100	100	0.5	4.5	50	1.2	2.2	32	2.1	14.0	20	3.2	8.9
100 – 150	53	1.0	2.6	25	2.2	1.3	15	3.9	7.0	13	5.8	6.5
150 – 200	26	1.4	1.4	13	3.1	0.66	7.9	5.5	3.9	6.6	8.1	3.2
200 – 250	17	1.8	0.78	7.5	4.1	0.36	4.8	7.3	2.3	4.5	10.2	2.0
250 – 300	9.6	2.3	0.46	5.0	5.2	0.24	2.7	9.2	1.4	2.6	12.3	1.4
300 – 350	7.1	2.8	0.34	3.3	6.4	0.17	2.0	11.3	0.95	2.1	14.3	1.0
350 – 400	4.4	3.4	0.21	2.1	7.7	0.1	1.3	13.7	0.65	1.8	16.1	0.69
400 – 450	2.0	4.1	0.09	1.0	9.3	0.05	0.6	16.5	0.29	0.8	17.7	0.31
450 – 500	0.9	4.9	0.04	0.4	11	0.02	0.3	19.6	0.13	0.4	19.2	0.14
sum		22.2			50.2			89.1			106.8	

Rates of > 5 kHz/cm² ⇒ major detector R&D required

CBM Collaboration

41 institutions, 15 countries

Croatia: RBI, Zagreb China: Wuhan Univ. Cyprus: Nikosia Univ. **Czech Republic:** Czech Acad. Science, Rez Tech. Univ. Prague France: **IReS Strasbourg** Hungary: **KFKI** Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen

Germany:

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Poland: Krakow Univ. Warsaw Univ Silesia Univ. Katowice Portugal: LIP Coimbra Romania: **NIPNE Bucharest**

Russia:

CKBM, St. Petersburg **IHEP** Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. **PNPI** Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev

Working Groups

	R&D on fast gaseous detectors for TRD	JINR-LHE Dubna, GSI Darmstadt, Univ. Münster, PNPI		
_		St. Petersburg, NIPNE Bucharest		
	R&D on straw tube tracker (TRD)	JINR-LPP Dubna, FZR Rossendorf		
	R&D on Ring Imaging Cherenkov Detector (RICH)	IHEP Protvino, GSI Darmstadt, Pusan Nat. Univ., PNF St. Petersburg		
	Design and construction of an electromagnetic calorimeter (ECAL)	ITEP Moscow, Univ. Krakow, Univ. Frankfurt		
Task	Diamond microstrip detector	GSI, Univ. Mannheim		
Feasibility study D-Meson identification	Trigger and Data Acquisition	KIP Univ. Heidelberg, Univ. Mannheim, JINR LIT Dubna, GSI Darmstadt, Univ. Bergen, KFKI Budapest, Silesia Univ. Katowice, PNPI St. Petersburg, Univ. Warsaw		
identification via electron-positron pairs Feasibility study charmonium identificat	Design of a superconducting dipole magnet	JINR-LHE Dubna, GSI Darmstadt		
via electron-positron pairs	Calculation of radiation doses	Kiev Univ. Czech Acad. Science Rez		
via muon pairs Simulations hadron identification via TC	Modification of HADES for 8 AGeV			
Simulation tools	Delta electrons	GSI Darmstadt		
Tracking	 KIP Univ. Heidelberg, Univ. Mannheim, J Dubna, JINR-LIT Dubna 	NR-LHE		
Silicon Pixel Detector	IReS Strasbourg, Frankfurt Univ., GSI D: Zagreb, Krakow Univ.,	armstadt, RBI		
Silicon Strip Detector	Obninsk Univ., SINP Moscow State Univ Petersburg, KRI St. Petersburg	., CKBM St.		
R&D on RPC TOF detector system with	LIP Coimbra, Univ. Santiago de Compos	tela, Univ.		
	Moscow, EZR Rossendorf IHEP Protvin			
	Moscow Korea Univ Seoul RRI Zagreb			
	Univ. Marburg	33		
	I we can a construction to see a particular			

FAIR Baseline Cost

CORE Evaluation

and TAC recommendation

	(M€)	
Accelerators	533	
Baseline Experiments ** Buildings & Supply Systems	180 289	
Total Investments	1002	
Manpower (2400 MY)	185	
Total Project Construction Cost	1187	

75% of construction cost from Germany, 25% from member states Operation costs shared among member states

** additional funding expected from 30 non-member states already involved in FAIR experiments
Feb. 26-28, 2007Frontiers in Nuclear and Neutrino Physics35

Summary of CBM

- 1. Systematic investigations of dense matter
 - A+A collisions from 8 to 45A GeV (for Z/A=0.5)
 - p+p and p+A collisions from 8 to 90 GeV
 - Beam energies up to 8A GeV by HADES
- 2. Detector and machine requirements
 - High beam intensity and duty cycle
 - Large geometrical acceptance
 - Good hadron, electron, and muon identification
 - Excellent vertex resolution
 - High rate capability of detectors, FEE and DAQ
- 3. Observables
 - Penetrating probes: ρ , ω , ϕ , J/ψ (light and heavy vector mesons)
 - Strangeness: K, Λ , Σ , Ξ , Ω
 - Open charm: D^{o} , D^{\pm}
 - Hadrons (p, π), exotica, etc.

4. It will be a unique opportunity for the study of dense nuclear matter.

Summary of FAIR

1. Wide Physics Coverage

- Nuclear structure and nuclear astrophysics (LENS)
- Hadron physics (HaPhy)
- Compressed baryonic matter (HIM)
- Plasma physics
- Atomic physics
- Biophysics
- Accelerator and detector R & D
- Applications

2. Present developments

- Actively progressing
- 13 member states and 4 observer states (Korea?)
- Total budget: € 1187 M
- Expected completion: 2015

3. FAIR could be a model of the National Institute of Nuclear Science in Korea

Relativistic Heavy-Ion Accelerators

Accelerator	c.m. Energy (GeV)	Status
SIS18 (GSI, Germany)	2A (A=mass number)	Running
AGS (BNL, USA)	5A	Finished
SIS300 (GSI, Germany)	8A	Plan to run in ~2015
SPS (CERN, Switzerland)	20A	Finish soon
RHIC (BNL, USA)	200A	Run since 2000
LHC (CERN, Switzerland)	5500A	Plan to run in ~2008

Critical endpoint: Z. Fodor, S. Katz, hep-lat/0402006 S. Ejiri et al., hep-lat/0312006

Looking into the fireball,

... using the penetrating probes: short-lived vector mesons decaying into electron-positron pairs

Strangeness Production

When the enhancement of hyperons starts?

Silicon Vertex Detector

Silicon Tracking System: 2 (3) Pixel Stations/ 5 (4) Strip Stations Vertex tracking: two pixel layers (5 cm and 10 cm downstream target)

Design goals:

- low materal budget: d < 200 μm
- single hit resolution < 20 μ m
- radiation hard (dose $10^{15} n_{eq}/cm^2$)
- read-out time 25 ns

Roadmap:

R&D on Monolithic Active Pixel Sensors (MAPS)

- thickness below 100 µm ✓
- pitch 20 μ m, single hit resolution : \approx 3 μ m \checkmark
- radiation tolerant (10¹³ n_{eq}/cm²)
- ultimate read-out time few µs

Alternative: next generation of thin, radiation hard, and fast hybrid detectors

Feb. 26-28, 2007

MIMOSA IV IReS / LEPSI Strasbourg

Fast TRD

