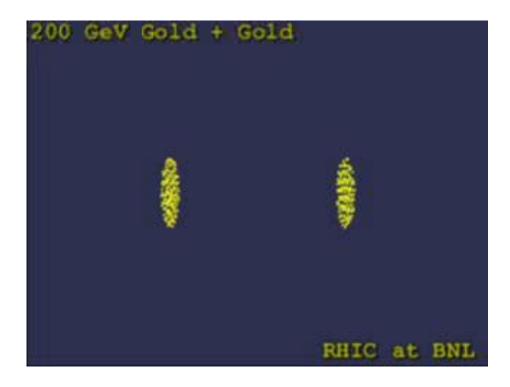
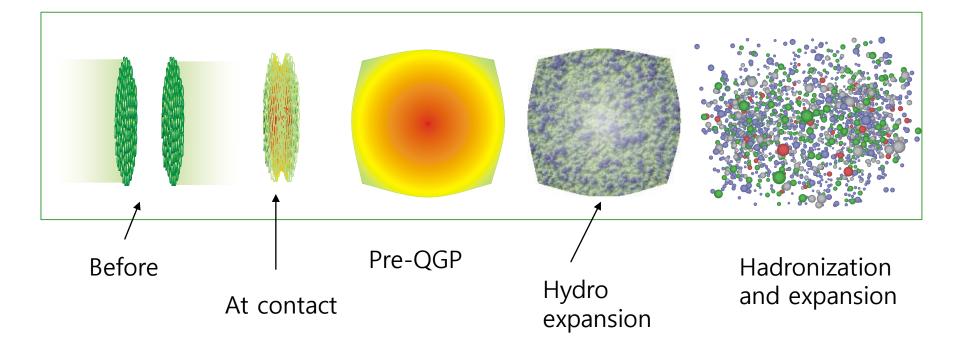
2007 APCTP Workshop on

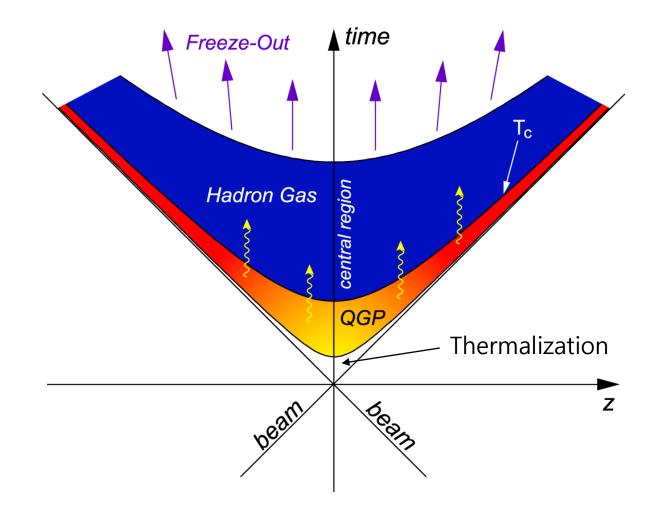
"Frontiers in Nuclear and Neutrino Physics"


HIC: ALICE, The Wonderland (more or less personal view)

Shin, Ghi Ryang Dept. of Physics, ANU


Feb. 26-28, 2007

I. Introduction


• HIC(heavy ion collision) Simulation (Au-Au from BNL)

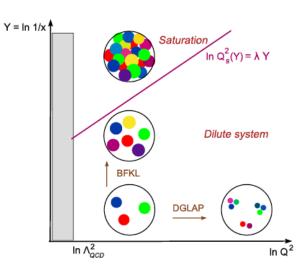
• Schematic Time evolution 1:

- Schematic Time evolution 2:

• Basic data:

	RHIC	LHC
E_cm	200 GeV	5.5 TeV
А	Au(197)	Pb(207)
R	6.4 - 7 fm	6.5-7.1 fm
gamma	100	2750
$X(=p_d/p_p)$	10^-2 - 10^-3	10^-3 - 10^-4
Q_0	1-2 GeV/c	2-3 GeV/c

II. Before the collision


- At Rest:
 - $R = 1.1 A^{1/3} fm$
 - Nucleon distribution: see textbook on nuclear physics
 - Wood-Saxon model
 - Shell model
 - Liquid-drop model
 - Constant density (Sharp-edge) model
 - Parton distribution:
 - DIS(ep) scattering: See Halzen and Martin

- At high speed:
 - Lorenz contraction with gamma factor.
 - Partons may overlap to become CGC(color glass condensate).
- In general, the parton distribution of a nucleon:
 - Momentum distribution:
 - CTEQ
 - GRV
 - MRST
 - And so on...: there is website providing the code.
 - No specific space distribution:

- Nucleon distribution within nuclei:
 - EKS : see Eskola
 - And so on...
- Thus,
 - CTEQ X EKS with space distribution
 - GRV X EKS with space

—

 Once we know one distribution at given scale, we can use BFKL or DGLAP equations.

- Recent development of distribution (CGC): See excellent reviews by McLerran, Venugopalan, Mueller, Blaizot etc.
 - Main idea:
 - High x parton: sources of Weizacker-Williams field
 - But those fields overlap and fuse together
 - Problems:
 - Gluon only.
 - At rest, those nucleons are independent. At high speed, they entangle and fuse. But, we know they should be related by LT and LT cannot explain the entanglement.

III. At Contact

- Two viewpoints:
 - Parton collision: See Eskola
 - Two (projectile and target) distributions overlap
 - Partons collide each other
 - $P_t > Q_0$: escape from parent nucleon
 - P_t < Q_0 : stay in the nucleon
 - Q_0 : perturbative regime
 - CGC shattering: see Krasnitz
 - Two CGCs smash and give birth to virtual partons
 - Equation of motion:

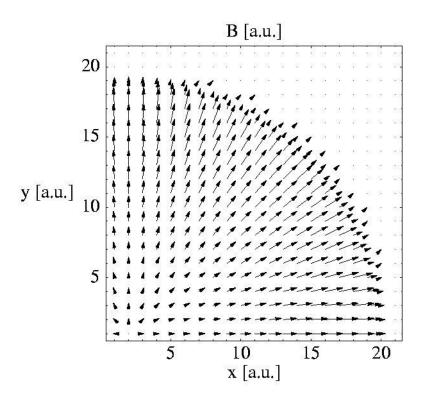
 $[D_{\mu}, F^{\mu\nu}]^{a} = J^{\nu,a} \qquad J^{\nu} = \rho_{1}\,\delta(x^{-})\delta^{\nu+} + \rho_{2}\,\delta(x^{+})\delta^{\nu-}$

• 4 different kinds of partons:

- High p_t and high p_z: jets
- High p_t and low p_z : jets, will travel through medium
- Low p_t and high p_z : mostly valence partons
- Low p_t and low p_z : soft partons, medium
- NOTE: the collision time is very short
 - ~ 0.14 fm/c at RHIC
 - ~ 0.005 fm/c at LHC
- Tentative thermalization time is 0.6 1 fm/c

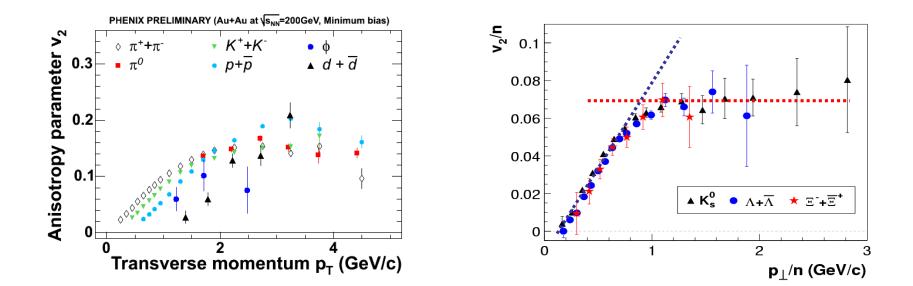
IV. Formation of QGP: Just after a collision

- Very difficult subjets. But we can make scenarios
- Hawking-Unruh Radiation: <u>Born to be thermal</u>: see Khazeev et al. or Satz
 - Hawking Radiation: near the event horizon, radiation escape with thermal temp. T ~ g/2pi
 - Unruh radiation: From the equivalence principle, the accelerating particle also radiates with T ~ a/2pi
 - Thus strongly decelerating partons while overlapping radiate in thermal, T ~ a/2pi.
 - We know that the nucleons become transparent as the collision energy goes high.


- Bottum-up scenario: see Mueller at al.
 - Soft partons thermalized first
 - Hard parton thermalized
 - Time scales have been given.
- Collision scenario: see parton cascade
 - Partons collide each other to become thermal
 - Shuryak claims one collision per parton is enough.
 - No collective effects of soft partons

- Weibel Instability : See Mrowczynski
- Color Force Explosion: personal view
 - High p_t or high p_z (most likely valence quarks) quickly escape from the system
 - Color charge unbalance in the system
 - Substantial color force will exert each other
 - We need to look at the ep collision if there is explosion!!
- And so on :

V. Hydro expansion


- There are many groups working on the subjects: Japanese group (Hirano, Nonaka, and so on), Yonsei group, ...
- 1D, 2D, 3D hydro
- Recently analytic solutions have been sought and found:
 - 1D: Bjorken expansion
 - 2D:
 - 3D: ellipsoidal Hubble-like expansion, see Csorgo

An example of Hubble-like expansion

- This means that, with small viscosity,
 - The expansion is more or less free motion in particle point of view. Thus a collisionless transport theory may works fine.
 - While they run free, less virtual partons eat higher virtual partons to become constituent partons (quarks or antiquarks only): see valon theory by Hwa.

We look at v2 : see Lacey Very different v2 aline nicely with constituent quarks or antiquarks: which means 1) hadrons have common partons, 2) the elements are constituent partons.

VI. Hadronization

- Two ways to make hadron:
 - Recombination method:
 - Cooper and Frye:
 - Fries, Muller, Nonaka, and Bass:
 - Greco, Ko, and Levai:
 - Fragmentation method:
 - Unified view : see Majumder, based on field theory

VII. Hadron Evolution

- UrQMD works fine
- And so on

VIII. Conclusion

Thanks for attention