

Jet Finding in the CMS Heavy Ion Programs

APCTP Workshop POSTECH, Pohang, Feb. 27, 2006

Inkyu PARK Dept. of Physics, University of Seoul

Athens, Auckland, Budapest, CERN, **Chonbuk Univ.**, Colorado, Cukurova, Iowa, Kansas, **Korea Univ.**, Los Alamos, Lyon, Maryland, Minnesota, MIT, Moscow, Mumbai, Rice, **Univ. of Seoul**, Vanderbilt, UC Davis, UI Chicago, **Yonsei Univ.**, Zagreb

- 1. LHC as a new tool for HI Physics (5 pages)
- 2. CMS as detectors for HI physics (10 pages)
- 3. CMS-HI Physics capability
- 4. Introduction to Jet and Jet finders (12 pages)
- 5. CMS-HI Korean Physicists lead...
- 6. Jet finding at CMS-HI
- 7. Remarks and Summary

(6 pages)
(4 pages)

(6 pages)

(3 pages)

total of 55 pages \rightarrow So let's move fast...

LHC as a new tool for HI Physics

- Once again a big energy jump! LHC will accelerate and collide heavy ions at energies far exceeding the range of existing accelerators. It means
 - Extended kinematic reach for pp, pA, AA
 - New properties of the initial state, possible gluon saturation at mid-rapidity
 - A hotter and longer lived partonic phase
 - Increased cross sections and availability of new hard probes

	AGS	SPS	RHIC	LHC
√s _{NN} [GeV]	5	20	200	5500
E increase		x4	x10	x28
y range	± 1.6	± 3.0	±6	± 8.6

- Data from SPS & RHIC show new and unexpected properties of hot nuclear matter
 - Jet quenching, strong elliptical flow, d+Au- control data indicate that we have produced strongly interacting color liquid
- LHC will significantly increase energy density
 - new properties of the QGP
 - Continuation of strong coupling regime?
 - Weakly interacting Plasma?
 - New discoveries guaranteed!

Soft observables: RHIC → LHC

RHIC shows a simple energy dependence. How about at the LHC ?

• RHIC prefers Hydrodynamic limit. How about at the LHC?

ארואלייי האירועליי

- Copious production of high p_T, high-mass particles
- Large production cross section for the J/ψ and · family

Jets are fully reconstructed for the first time in heavy ion collisions.

After background subtraction

LHC accelerator schedule

Calendar Year	p+p	Heavy Ions
2007	450+450 GeV, 5·10 ³⁰ Short engineering run	none
2008	14 TeV, 0.5·10 ³³	5.5 TeV, 5·10 ²⁵ Pb+Pb
2009	14 TeV, 1·10 ³³	5.5 TeV, 1·10 ²⁷ Pb+Pb
2010	14 TeV, 1·10 ³⁴	5.5 TeV, 1·10 ²⁷ Pb+Pb
2011	14 TeV, 1·10 ³⁴	5.5 TeV, 1·10 ²⁷ Pb+Pb, other ions

- Heavy Ion runs always follow p+p runs, at the end of calendar year
- Nominal data taking time:
 - p+p: 10⁷ seconds/year
 - Heavy ions: 10⁶ seconds/year: 0.5 nb⁻¹
- Heavy Ion nominal luminosity is likely to be reached earlier than for p+p

CMS as detectors for HI Physics

CMS, as a heavy ion experiment

studied in detail at $dN_{ch}/d\eta\approx\!\!3000\text{-}5000$ and cross-checked at 7000-8000

CMS Detector Coverage

- Hermeticity, Resolution, Granularity
 - Central region ∆η~5 equipped with tracker, electromagnetic and hadronic calorimeters and muon detector
- Forward coverage
 - Calorimetric coverage of $\Delta\eta{\sim}10$
 - Additional calorimeters proposed to extend the coverage: CASTOR $\Delta\eta \sim 14$
 - Zero Degree Calorimeter (ZDC)
- High data taking speed and trigger versatility

 Sub detector
 Coverage

 Tracker, muons
 $|\eta| < 2.4$

 ECAL + HCAL
 $|\eta| < 3.0$

 Forward HCAL
 $3.0 < |\eta| < 5.2$

 CASTOR
 $5.2 < |\eta| < 6.6$

 ZDC (neutrals)
 $8.2 < |\eta|$

CMS getting ready for beam

2006 Magnet operation, CMS Magnet operated at 4T, the nominal field!

Measuring Muons

Tracking Resolution-Muon System with Vertex Constraint

Resolution Standalone Feb. 27, 2007

Tracking Resolution-Muon System with Inner Tracker

Resolution with tracker

1

0.75

2

° 0

0.25 0.5

2007 APCTP (🖉 Pohang

1.25 1.5

٠

2

1.75

2.25

η

Tracking Performance for HI

Low p_T tracking using three layers of pixels

2007 APCTP @ Pohang

Electromagnetic Calorimeter

• 76000 PbWO4 crystals

- Granularity in $\Delta \eta \mathbf{x} \Delta \phi$:
- 0.0174 x 0.0174 (Barrel) and
- 0.0174 x 0.0174 to 0.05x0.05 (Endcap)
- Endcap with preshower for γ/p0 separation
- Details in CMS Technical Design Reports

Centrality and forward detectors

Centrality (impact parameter) determination is needed for physics analysis

2007 APCTP @ Pohang

CMS-HI Physics capability

Heavy Ion MC Event in CMS

Pb+Pb event (dN/dy = 3500) with $\Upsilon \rightarrow \mu^+\mu^-$

Pb+Pb event display: Produced in pp software framework (simulation, data structures, visualization)

Charged particle multiplicity

C. Smith, 2003

Will be one of the first results, important for initial energy density, saturation, detector performance etc.

Simple extrapolation from RHIC data

• high granularity pixel detectors

- <u>pulse height measurement</u> in each pixel reduces background
- Very <u>low p_T</u> reach, p_T>26 MeV (counting hits)

Muon detection, tracking, jet finding performance checked up to $dN_{ch}/d\eta$ =5000

2007 APCTP @ Pohang

Elliptic Flow measurements in CMS

- Reaction plane reconstructed via energy deposited in ECAL+HCAL: $\sigma\text{=}0.12$ rad
- Left: reconstructed energy deposition in the barrel and endcap regions for electromagnetic and hadronic calorimeters as function of the azimuthal angle for b = 6 fm
- Right: difference between generated and reconstructed reaction plane angle for Pb+ Pb collisions b = 6 fm S. Petrushanko, 2003

Quarkonia: Y and J/y

2007 APCTP @ Pohang

High Mass Dimuon, Z Production

Kvatadze, 1999

 Z->µµ reconstructed with high efficiency by design

- A probe to study nuclear shadowing
- Unaffected reference for jet-tagging studies
- Dimuon continuum dominated by b decays
 - Heavy quark energy loss
- High statistics
 - O(10⁴) Z per nominal HI run

Tagged jets: jet+γ, Z/γ*->μμ

Z+jet event in the Heavy Ion collision

dNch / dY = 5000

 $Jet + \mu^+ \mu^- 81 \text{ GeV/c}^2 < M_{\mu\mu} < 101 \text{ GeV/c}^2$

2007 APCTP @ Pohang

50

C. Mironov, 2006

Introduction to Jet and Jet finders

- Collimation of final state particles in a certain direction in collision events
- Particle in a jet has little transverse momentum along with the jet direction.

LEP/ALEPH

Jet?

PETRA/TASSO

Tevatron/CDF

2007 APCTP @ Pohang

- Parton → fragmentation / hadronization
- Charged particles → Trackers
- Charged and Neutrals → ECAL & HCAL

Why Jets are important?

Typical shape of $E_T \eta - \phi$ map

The best jet finder is human eyes
Computational approach is natural and mandatory

- Cone algorithm
- Iterative cone algorithm
- Sliding window algorithm
- Mid-point cone algorithm
- K_T algorithm
- FastJet algorithm (K_T with CGAL)
- Mulguisin algorithm (ATLAS JetFinder Library)
 - proposed and by the man you are looking at
- → Systematic study on various jet-finders at the LHC energy is important

- Simple and intuitive.
- Cone seed starts with the maximum E_T cell
- consider all cells within R
- Cone center $\rightarrow (\eta^C, \phi^C)$
- Cell i is $\sqrt{\left(\eta^{i} - \eta^{C}\right)^{2} + \left(\varphi^{i} - \varphi^{C}\right)^{2}} \leq R$
- Energy of cone $E_T^C = \sum E_T^i$

- Energy weighted center of jet $\bar{\eta}^{C} = \sum E_{T}^{i} * \eta^{i} / E_{T}^{C} ; \bar{\varphi}^{C} = \sum E_{T}^{i} * \varphi^{i} / E_{T}^{C}$
- overlapping jet, sharing, etc.

Cone algorithm variants

- Cone algorithm → infrared unsafe, collinear unsafe
- Most of time cone center is not jet center (E_T weighted) → Re-center cone, and update cell list
- CPU ~ O(N²)

 Cone merge, separation, recalculating the jet center, etc. are necessary → various cone variants, such as Midpoint, Iterative, Double cone, etc..

- Minimize Invariant mass → Looks like to have theoretical basis, but not really.
- No overlapped jets, every parton, particle, or detector cell is assigned to a jet

K_T algorithm continued

서 을 시 립 대 학 교 UNIVERSITY OF STOUL

- Infrared, Collinear safe!
- Less sensitive to hadronization effects
- Not easy to calibrate jet energy compared with Cone jet
- **Big CPU consumption**
- CPU ~ O(N³)
- No way in the case of trackers with LHC HI program

p+p @ √<u>s</u> = 200 GeV

STAR Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV

Special care is needed to find jet in HI program

Leading particle was considered as the Jet signal at RHIC

- M. Cacciari, G. Salaam hep-ph/0512210
- CGAL geometry package is used
- Extracting 3D model from point clouds using Delaunay triangulation algorithm

Mulguisin algorithm

2007 APCTP @ Pohang

CMS-HI Korean Physicists lead the jet finder activity

- 2006 summer: We have visited CERN and started implementation of Jet Finding Library in HIROOT.
- FastJet (M. Cacciari et al), a promising Kt substitute, was needed to be implemented.
- 2006 fall: CMS-KR Heavy-Ion team was formed. ~5
 PhDs and ~10 graduate students from 4 institutions
 - Univ of Seoul, Chonbuk Nat'l Univ, Korea Univ. Yonsei Univ.
- CMS-HI convener made a visit to Korea to promote CMS-KR.
- 2007 now: 6 graduate students are working with HIROOT/CMSSW
 - 2 are writing their theses for Master degree with Jet finding
 - 2 are working with MC/muon for their PhD degree
 - 2 are doing more computing/grid elaborated work

- 3 Jet algorithms were implemented and tested
- THISimpleKtJetFinder → from a historical FORTRAN version
- THIFastJetFinder → from M. Cacciari's release
- THIMulguisinJetFinder → MGS algorithm from ATLAS Jet library
- Job assignment:
 - Inkyu \rightarrow hiroot coding, library implementation
 - **BS Chang, KS Kim** \rightarrow Jet study, benchmark
 - **DH Moon, JH Kim** \rightarrow MC generation (HIJING, HYDJET)
 - **JW Park** \rightarrow Heavy-Ion Data Grid preparation

- Use CMS-HI Tier2 of UoS
- HIROOT + CGAL 3.2.1 patch, fastjet 2.0.0
- DATA : generated with HYDJET/HIROOT
 - Multiplicity ~ Eⁿ where n=1,2,3,4
 - 4 Hydjet Type(THIHydjet::EydjetSel)
 - 25 Energy Level (100~14000)
 - 400 runs each 100 events

• Jet Finders for benchmark : 6 finders (JetTh=30GeV)

- IterativeCone with/without Seed Threshold
- SimpleKt
- FastJet(N2), FastJet(NInN)
- Mulguisin

M. Cacciari's publication

Figure 2: The running times (on a 3 GHz Pentium 4 processor with 1 GB of memory, 512 kB of cache, and version 3.4 of the GNU g++ compiler) of the KtJet [22] and FastJet implementations of the k_t -clustering jet-finder versus the number of initial particles. Different values of N have been obtained by taking a LHC dijet event with $p_t \simeq 60$ GeV and adding on variable numbers of minimum bias events. Both kinds of events have been simulated with Pythia 6.3 [28].

Benchmark: Particle level study

KT algorithm fails with high multiplicity Cone is faster than FastJet FastJet (N2) and MGS show O(N2) behaviour • FastJet (NInN), i.e. with CGAL, show fast result, thus can be a substitution of KT Not a real case!!

done by B.S. Chang

Benchmark: Calorimeter level study

Jet Finding at CMS-HI

Jet Reconstruction

Jet $E_{T} \sim 100$ GeV, Pb Pb background $dN_{ch}/dy \sim 5000$

Jet in pp after pileup subtraction Pb Pb background

Jet superimposed on

Jet in Pb-Pb after pileup subtraction

Event-by-event background subtraction:

- Calculate <E_T^{Tower}(η)> and D^{Tower}(η) for each η ring
- Recalculate all E_T^{Tower} tower energies:

 $E_{T}^{Tower} = E_{T}^{Tower} - E_{t}^{pile-up}$ $E_{t}^{pile-up} = \langle E_{T}^{Tower}(\eta) \rangle + D^{Tower}(\eta)$

- Negative tower energies are replaced by zero
- Find Jets with E_T^{jet} > E_t^{cut} using standard iterative cone algorithm using new tower energies
- Recalculate pile-up energy with towers outside of the jet cone
- Recalculate tower energy with new pile up energy
- Final jets are found with the same iterative cone algorithm $E_T^{\text{Jet}} = E_T^{\text{cone}} - E_t^{\text{pile-up new}}$

Efficiency, Purity vs. Jet Energy

Reconstructing 50-300 GeV Jets in Pb-Pb background

- EFFICIENCY
 - Number of events with true reco. Jets/Number of all generated events
- PURITY
 - Number of events with true reco. QCD Jets/ Number of all reco. Jet events (true+fake).
- Threshold of jet reco. ET >30 GeV.
- Above 75(100) GeV we achieve
 100% efficiency and purity in the barrel (endcap)
 - Unbiased

- The resolutions are degraded in Pb Pb collisions
 - η , ϕ better than size of calorimeter tower (0.087x0.087)
 - E_T resolution ~16% at 100GeV
- Expect further improvement by adding tracker information
 - p_T measurement of tracks is more precise than the response of the calorimeter
 - Recover charged tracks that are bent out of the jet cone by the magnetic field

Remarks & Summary

- KU are working with HYDJET, HIJING with HIROOT / CMSSW + Muon package work
 - Study HYDJET and CMS MC generation with CMSSW
- E.J.Kim et al. have visited MIT in early Feb., and are setting now CMS-HI Tier2/3.
 - Learn MIT Tier 2 & d-Cache, operation, etc.
- Univ. of Seoul will invest \$0.2M for computing upgrade (2007 budget plan)
 - 256 machines \rightarrow Data storage configuration
 - 64TB (mid 2007) → 128 TB (end 2007) → 256TB (goal)
- New CPU 64bit dual core machines are to come
 - total of 128 Xeon cluster (TIER2)

- Full contribution! KT Jet and FastJet implementations in HIROOT / CMSSW.
 - Kt, FastJet, Mulguisin
- CMS-HI Tier2 (both Data grid & CPU grid) will be added as a Korean contribution
 - both LCG and OSG are available. MC contribution too.
- Muon package contribution will be added
- We move forward toward CMS JetFinder Library.
- Visible contribution to CMS/LHC world.
- Strongly hope to do real physics with our jetfinder library.

- Understanding jet is crucial in LHC experiments.
- The CMS Detector will allow precision jet study
 - The combination of large acceptance Calorimeters high precision charged particle tracking and flexible Trigger/DAQ system will allow us to address a wide range of Jet Physics observables
- Jet Physics in Heavy Ion Collisions will be an exciting new field of study with jets
 - Need to develop many new experimental techniques
- New algorithms should be considered due to unprecedented CPU time and better precision
 - FastJet, Mulguisin, and hybrid algorithms
- KR CMS-HI group will do real contributions and will make real physics outputs