Heavy Flavours <u>and</u> Heavy-Ion Collisions: Status and ALICE Perspectives

Federico Antinori INFN Padova & CERN

Contents

Heavy Flavours as medium probes in AA collisions decays production in QCD in p/π -A fragmentation at Tevatron in AA in ALICE

Intro: Heavy Flavours as medium probes in AA collisions

Charm & beauty: ideal probes

- calculable in pQCD; calibration measurement from pp
 - \rightarrow rather solid ground
 - caveat: modification of initial state effects from pp to AA
 - shadowing ~ 30 %
 - saturation?
 - pA reference fundamental!
- produced essentially in initial impact
 probes of high density phase
- no extra production at hadronization
 - \rightarrow probes of fragmentation
 - e.g.: independent string fragmentation vs recombination

Heavy Flavour Quenching

- quenching vs colour charge
 - heavy flavour from quark ($C_R = 4/3$) jets
 - light flavour from (p_T -dep) mix of quark and gluon ($C_R = 3$) jets
- quenching vs mass
 - heavy flavour predicted to suffer less energy loss
 - gluonstrahlung: dead-cone effect
 - beauty vs charm

→ heavy flavour should provide a fundamental tool to investigate the properties of the medium formed in heavyion collisions

 \rightarrow at LHC: high stats and fully developed jets

Heavy Flavour Decays

Some zoology...

- Lower mass heavy flavour hadrons decay weakly
 - τ ~ ps
 - cτ ~ 100's μm
- weakly decaying states from PDG 2006 summary tables:

$D^+(c\overline{d})$	m≈1869 MeV	$c\tau \approx 312 \mu m$
$D^0(c\overline{u})$	m≈1865 MeV	$c\tau \approx 123 \mu m$
$D_s^+(c\overline{s})$	m ≈1968 MeV	$c\tau \approx 147 \mu m$
$\Lambda_c^+(udc)$	$m \approx 2285 \text{ MeV}$	$c\tau \approx 60 \mu m$
$\Xi_c^+(usc)$	m ≈ 2466 MeV	$c\tau \approx 132 \mu m$
$\Xi_c^0(dsc)$	$m \approx 2472 \text{ MeV}$	$c\tau \approx 34 \mu m$
$\Omega_c^0(ssc)$	m ≈ 2698 MeV	$c\tau \approx 21 \mu m$

$B^+(u\overline{b})$	$m \approx 5279 \text{ MeV}$	$c \tau \approx 501 \mu m$
$B^0(d\overline{b})$	m ≈ 5279 MeV	$c \tau \approx 460 \mu m$
$B_s^0(s\overline{b})$	$m \approx 5370 \text{ MeV}$	$c\tau \approx 438 \mu m$
$B_c^+(c\overline{b})$	m ≈ 6.4 GeV	$c \tau \approx 100 - 200 \mu m$
$\Lambda_b^0(udb)$	m ≈ 5624 MeV	$c \tau \approx 368 \mu m$

Impact parameter ~ $c\tau$

... so b ~ independent of γ

• if $\cos \theta_{CM}$ distribution is flat:

$$f(\theta_{CM})d\theta_{CM} = \frac{1}{2}\sin(\theta_{CM})d\theta_{CM}$$
$$\left\langle \theta_{CM} \right\rangle = \frac{1}{2}\int_{0}^{\pi}\theta_{CM}\sin(\theta_{CM})d\theta_{CM} = \frac{\pi}{2}$$

so, in space,

$$\langle \mathbf{b} \rangle = c \, \tau \langle \theta_{CM} \rangle = \frac{\pi}{2} c \, \tau$$

FA - HIM, Seoul - 18 April 2007

• in projection:

$$d = b\cos\varphi$$

$$f(\varphi) = \frac{1}{\pi}d\varphi;$$

$$\langle d \rangle = \langle b \rangle \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos\varphi d\varphi = \frac{2}{\pi} \langle b \rangle$$

SO:

$$\langle \mathbf{d} \rangle = c \, \tau$$

Weak decays of charm

FA - HIM, sed and with a respectable p_...)

Experimental tools

Silicon
 so: treventes

• impac

impo

e[±] and/o

charged

Heavy Flavour Production in QCD

Heavy Flavour hadro-production in pQCD

$$\int (G_{a/A}(x_a)G_{b/B}(x_b)\hat{\sigma}_{ab\to c\bar{c}}(\hat{s}=x_ax_bs)(D_{D/c}(z)) = \sigma_{AB\to DX}$$

factorization implies:

- PDFs can be measured with one reaction...
 - say: Drell-Yan: $A+B \rightarrow e^+e^- + X$
 - ... and used to calculate a different one
 - say: heavy-flavour production
- fragmentation independent of the reaction (e.g.: same in pp, e⁺e⁻)

Leading-order (LO)

Relevant diagrams: pair creation

(quark-antiquark annihilation)

• $q\overline{q} \rightarrow Q\overline{Q}$

• $gg \rightarrow QQ$

(gluon-gluon fusion)

A few results

- the partonic cross-section decreases with energy
 - faster for qq than for gg (which therefore is expected to dominate, except near threshold)

 $y = \frac{1}{2}\log\frac{E+p_z}{E-p}$

- the parton luminosities near threshold increase with energy, the cross section increases with the energy of the hadron-hadron collision
- the pair cross section is proportional to:

$$\frac{1}{\left[1 + \cosh(y - \overline{y})\right]^2}$$

y (\bar{y}): rapidity of Q (\bar{Q})

- \rightarrow Q and \overline{Q} therefore expected to be close in y
- \rightarrow Experimentally: EHS, 360 GeV π -p \rightarrow DDX

FA - HIM, Seoul - 18 April 2007

[EHS: PLB 123 (1983) 98]

Next-To-Leading-Order (NTLO)

- in absolute value, LO cross sections are typically underestimated by factor 2.5 - 3 ("K factor")
- at NTLO: additional diagrams, such as:

16

- the agreement with experiment for the total cross-section is good (within large bands...)
 - e.g.: charm cross section at fixed target:

[Mangano: hep-ph/9711337]

- results depend on the values of:
 - m_c , μ_R (renormalization scale), μ_F (factorization scale)
- the result of an exact calculation would be independent of the choice of the scale parameters $\mu_{\rm R}$, $\mu_{\rm F}$
 - the residual scale dependence is a measure of the accuracy of the calculation
 - e.g.: for b production at Tevatron ($\mu_R = \mu_F = \mu$):

[Mangano: hep-ph/9711337]

FA - HIM

- it is important to match the PDFs with the order of the calculation.
- e.g. one must avoid double counting:
 - at LO:

"intrinsic flavour"

"flavour excitation"

Heavy Flavour in p/π -A

Nuclear shadowing

- PDFs in the nucleus different from PDFs in free proton
 - R = ratio of nuclear to nucleon PDFs
 - from Deep Inelastic Scattering (e⁻+p; e⁻+A), Drell-Yan (p+p, p+A → l⁺l⁻+X)

Nuclear dependence

- From pQCD one expects the cross section for production off nuclei to increase like number of nucleon-nucleon collisions ("binary collision scaling")
- \rightarrow proportional to number of nucleons (for min. bias collisions):

$$\sigma_A^{(Q\overline{Q})} = \sigma_0^{(Q\overline{Q})} A^{\alpha}$$
 with α =1

- modulo shadowing effects, expected to be small
- Experimentally: not far... e.g. WA82:
 - D production in π -+W/Si at SPS (340 GeV beam momentum)
 - (relatively) central production

 $\alpha = 0.92 \pm 0.06$

$$(x_F) = 0.24$$

$$x_F = p_z / p_{z \max} \approx \frac{2p_z}{\sqrt{s}}$$

Caveats...

i) α = 1 does not work down to pp!

$$\sigma_0^{c\bar{c}} \neq \sigma_{pp}^{c\bar{c}}$$

 e.g.: MacDermott & Reucroft [PLB 184 (1987) 108] compare pA results with earlier hydrogen data from NA27, good agreement using:

$$\sigma_{pA}^{c\bar{c}} = K_0 \sigma_{pp}^{c\bar{c}} A^{\alpha}$$

$$\alpha \approx 1, \ K_0 \approx 1.5$$

note: similar situation for light flavours!

systematic study by Barton et al. [PRD 27 (1983) 2580], for various reactions at 100 GeV FT

e.g.: central for production of π , K, p from p on nuclear targets:

$$\alpha \approx 0.6$$
 with $K_0 \approx 1.5 \div 2$

- ii) lower α at large x_F?
 - early beam dump experiments, sensitive at large x_F (max acceptance for x_F ≈ 0.5) (in tracking experiments, typically max. acceptance for x_F ≈ 0.2)
 e.g. WA78 [Cobbaert et al.: PLB 191 (1987) 456]
 - α for muons escaping dump (π -A at 320 GeV FT):

 $\alpha(\mu^+) = 0.76 \pm 0.08$ $\alpha(\mu^-) = 0.83 \pm 0.06$

note: α is known to decrease
 with x_F for light hadrons

Heavy Flavour Fragmentation

Fragmentation function

- fragmentation function: $D_{D/c}(z)$
- depends only on fraction z
- e.g.:

 $D_{D/}$

 $D_{D/c}(z) \propto \frac{1}{z[1-1/z-\varepsilon/(1-z)]^2}$

$$(z) \propto (1-z)^{\alpha} z^{\beta}$$
 Colangelo-Nason

e.g.: (parameters from fits to charm production at LEP)

- How to measure the fragmentation function?
 - we don't measure the original Q momentum ...
 - but in e^+e^- we do know the Q energy (by energy conservation!)
 - e.g.:

 fragmentation functions are usually extracted from e⁺e⁻ measurements and then used for other collisions

 e.g.: fits to charm x = 2E/√s distributions in e⁺e⁻: [Cacciari & Greco: PRD55 (1997) 7134]

FA - HIM, Seoul - 18 April 2007

- like for the PDFs, the fragmentation function has to be matched to order of pQCD calculation
 - e.g. at NTLO the Q can radiate:

 so final energy before non-perturbative part of fragmentation lower than at LO
 harder fragmentation at NTLO
 at NTLO: ε ≈ 0.015
 at LO: ε ≈ 0.06

(e.g.: [Cacciari & Greco: PRD55 (1997) 7134])

Joor

Heavy Flavour at Tevatron

Beauty at Tevatron

• Discrepancy between pQCD and data seems to have disappeared...

• from...

- From run I on, important improvements in accuracy:
 - experiment (vertex detectors, high statistics)
 - prediction (post-HERA PDF sets)
- Levels of stability over time:

Predictions

<u>Data</u>

from [Cacciari et al: JHEP 0407 (2004) 033]

- no large room for new physics any more...
- \rightarrow for more see, e.g.:

[Cacciari et al: JHEP 0407 (2004) 033, Cacciari: hep-ph/0407187, Mangano: hep-ph/0411020]

What about charm?

• Nice data from CDF run II

roughly in agreement with full pQCD calculation (though prediction somewhat low)

[CDF: Phys.Rev.Lett. 91 (2003) 241804]

 A curiosity (?): good agreement between data and prediction for bare quark

[Vogt: talk at SQM 2004]

Heavy Flavour in AA

Heavy flavour production in AA

binary scaling:

$$d\sigma_{AA} = N_{coll} \times d\sigma_{pp}$$

can be broken by:

- initial state effects (modified PDFs)
 - shadowing
 - k_T broadening
 - gluon saturation (colour glass)

(concentrated at lower p_T)

- final state effects (modified fragmentation)
 - parton energy loss
 - violations of independent fragmentation (e.g. quark recombination) (at higher p_T)

PHENIX pp

 Excess wrt FONLL: <u>Ratio:</u> 1.72 ± 0.02 (stat) ± 0.19 (sys) (0.3 < p_T < 9.0 GeV/c)

• Similar situation also in CDF:

[A. Adare et al. (PHENIX) Phys.Rev.Lett. 97 (2006) 252002]

FALD. Acosta et al. (CDF) PRL 91 (2003) 241804]

STAR v PHENIX pp

~ a factor 2 discrepancy

[J. Lajoie (PHENIX) QM06]

STAR dAu, AuAu

Internal consistency

[[]M. Calderon (STAR) QM06]

STAR v PHENIX dAu, AuAu

Discrepancy pretty "stable" v system, p_T

- looks like something very basic...
- of course then R_{AA} not too different...
- FA HIM, Seoul 18 April 2007

[A. Suaide QM06]

STAR V PHENIX: RAA

R_{AA} of non-photonic electrons

\rightarrow similar picture from STAR and PHENIX

→ R.Baier et al., Nucl. Phys. **B483** (1997) 291 ("BDMPS")

Energy loss for heavy flavours is expected to be reduced: i) Casimir factor

 light hadrons originate predominantly from gluon jets, heavy flavoured hadrons originate from heavy quark jets

C_R is 4/3 for quarks, 3 for gluons

ii) dead-cone effect

 gluon radiation expected to be suppressed for θ < M_Q/E_Q [Dokshitzer & Karzeev, Phys. Lett. B519 (2001) 199]
 [Armesto et al., Phys. Rev. D69 (2004) 114003]

Large suppression at RHIC!

 n.p. electrons ~ as suppressed as expected for c only (no b) yet, region above 3-4 GeV expected to be dominated by beauty...

Heavy Flavour in Alice

LHC

• Running conditions:

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	Run time (s/year)	σ _{geom} (b)
рр	14.0	10 ³⁴ *	107	0.07
PbPb	5.5	1027	106 **	7.7
pPb	8.8	10 ²⁹	106	1.9
ArAr	6.3	10 ²⁹	106	2.7

+ other ions (Sn, Kr, O) & energies (e.g.: pp @ 5.5 TeV)

LHC is a Heavy Flavour Machine!

- cc and bb rates
 - ALICE PPR (NTLO + shadowing)

system	NN x-sect (mb)	shadowing	total multiplicity
pp 14 TeV	11.2 / 0.5	1 / 1	0.16 / 0.007
Pb-Pb 5.5 TeV (5% cent)	6.6 / 0.2	0.65 / 0.85	115 / 4.6

Tracking

Full reconstruction of D decays

ALICE Silicor

impact parameters $\sim 100 \ \mu m$

cm

$D^0 \rightarrow K^-\pi^+$

expected ALICE performance

- S/B ≈ 10 %
- $S/\sqrt{(S+B)} \approx 40$ (1 month Pb-Pb running)

 p_T - differential

Beauty to electrons

- Expected ALICE performance (1 month Pb-Pb)
 - e^{\pm} identification from TRD and dE/dx in TPC
 - impact parameter from ITS

Expected performance on D, B R_{AA}

1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events)

should clarify the heavy flavour quenching story

Heavy Flavour v₂

- v₂ = azimuthal anisotropy ≠ elliptic flow
- can get charm v₂ from
 - direct charm elliptic flow
 - non-flowing c recombining with flowing matter
 - azimuthally dependent energy loss

• ...?

→ in general, $v_2 \neq 0$ if charm "strongly coupled" with azimuthally asymmetric medium...

electron v2 at RHIC

puzzle: at QM`05 different results from PHENIX and STAR...

• PHENIX:

 subtraction of conversions by converter method and cocktail

STAR:

- rejection of conversions by inv. mass combinations
- @ RIKEN-BNL heavy flavour workshop in december STAR said measurement affected by "too much photonic background"

FA - HIM, Seoul - 18 April 2007

54

Charm v_2 at LHC?

- Full reconstruction of D decays at LHC
 - qualitatively different measurement from non-photonic electrons!
 - better correlation with original heavy-quark momentum
 - b vs c
- First indications from preliminary studies in ALICE: expected error ~ few % (D v₂)

D_{s}^{+}

- D_s⁺ as probe of hadronization?
- from string fragmentation: $c\overline{s} / c\overline{d} \sim 1/3$
 - after decays: D_s^+ (cs) / D^+ (cd) ~ 0.6
- from recombination: cs / cd ~ N(s) / N(d)
 → how large at LHC?
- experimentally accessible?
 - D⁺ (c τ ~ 310 μ m) \rightarrow K⁻ π ⁺ π ⁺ with BR ~ 9.2 %
 - in Alice: probably similar performance as for $\mathsf{D}^0 \to \mathsf{K}^{-}\pi^{+}$
 - $D_{s^+}(c\tau \sim 150 \ \mu m) \rightarrow K^-K^+\pi^+ \text{ with BR } \sim 4.4 \ \%$
 - but mostly resonant decays: $\Phi\pi^+$ or K $_0^*$ K $^+$ (non resonant only 20 %)
 - \rightarrow favours bkgnd rejection (for D⁺ \rightarrow K⁻ $\pi^+\pi^+$, non-resonant ~ 96 %)
 - \rightarrow may be well visible (expecially if D_s⁺/D⁺ is large!)
- D_s v₂ would be particularly interesting!

Heavy flavour jets?

- For high energy jets:
 Nb ~ Nu,d
- → heavy flavour rich!
- b-tagged jets?
- \rightarrow study quenching of b jets!

Away side cone?

- Collective behaviour opposite to jet?
 - eg: Mach cone

[Casalderrey-Solana, et al.: hep-ph/0411315] [Stocker: Nucl.Phys. A750 (2005) 121])

What happens with big-fat-heavy quark jets?

Modified Mach cone?

- Heavy quarks at moderate p_T move with substantially lower speed
- e.g.: for beauty, taking:
 - $c_s^2 = 0.2$
 - m(b) = 4.5 GeV
- → b quark is "subsonic" for p < 2.25 GeV</p>
- → for p ~ 3-4 GeV, shock wave angle ~ 40⁰
- [FA, E Shuryak: J.Phys. G31 (2005) 19]

Now: observing THAT would be something!

Conclusion

- Heavy flavours kindly provide us with a very promising tool to study the properties of the strongly interacting medium produced in ultra-relativistic nucleus-nucleus collisions
- LHC is the place to be \rightarrow <u>very high rates</u>
 - p_T reach
 - recombination?
 - jets?
- ALICE is well equipped for heavy flavour physics