Heavy Flavours and Heavy-Ion Collisions: Status and ALICE Perspectives

Federico Antinori INFN Padova & CERN

Contents

Heavy Flavours as medium probes in AA collisions decays production in QCD in p/π -A fragmentation at Tevatron in AA in ALICE

Intro: Heavy Flavours as medium probes in AA collisions

Charm & beauty: ideal probes

- ⚫ calculable in pQCD; calibration measurement from pp
	- \rightarrow rather solid ground
		- ⚫ caveat: modification of initial state effects from pp to AA
			- shadowing \sim 30 %
			- ⚫ saturation?
		- ⚫ pA reference fundamental!
- ⚫ produced essentially in initial impact \rightarrow probes of high density phase
- ⚫ no extra production at hadronization
	- \rightarrow probes of fragmentation
		- ⚫ e.g.: independent string fragmentation vs recombination

Heavy Flavour Quenching

- ⚫ quenching vs colour charge
	- heavy flavour from quark $(C_R = 4/3)$ jets
	- \bullet light flavour from (p_T-dep) mix of quark and gluon ($C_{\sf R}$ = 3) jets
- ⚫ quenching vs mass
	- ⚫ heavy flavour predicted to suffer less energy loss
		- ⚫ gluonstrahlung: dead-cone effect
	- ⚫ beauty vs charm

 \rightarrow heavy flavour should provide a fundamental tool to investigate the properties of the medium formed in heavyion collisions

 \rightarrow at LHC: high stats and fully developed jets

Heavy Flavour Decays

Some zoology...

- ⚫ Lower mass heavy flavour hadrons decay weakly
	- \bullet $\tau \sim ps$
	- \bullet ct ~ 100's μ m
- ⚫ weakly decaying states from PDG 2006 summary tables:

Impact parameter ~ ct

... so b \sim independent of γ

if cos θ_{CM} distribution is flat:

$$
f(\theta_{CM})d\theta_{CM} = \frac{1}{2}\sin(\theta_{CM})d\theta_{CM}
$$

$$
\langle \theta_{CM} \rangle = \frac{1}{2}\int_0^{\pi} \theta_{CM} \sin(\theta_{CM})d\theta_{CM} = \frac{\pi}{2}
$$

so, in space,

$$
\langle \mathbf{b} \rangle = c \tau \langle \theta_{CM} \rangle = \frac{\pi}{2} c \tau
$$

FA - HIM, Seoul - 18 April 2007 8

$$
int: primary vertex\ndecay length = L\ndecay vertex\ndecay vertex\ndecay vertex
$$

⚫ in projection:

$$
d = b \cos \varphi
$$

\n
$$
f(\varphi) = \frac{1}{\pi} d\varphi;
$$

\n
$$
\langle d \rangle = \langle b \rangle \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos \varphi d\varphi = \frac{2}{\pi} \langle b \rangle
$$

$$
\begin{array}{c}\n\searrow \\
\hline\n\downarrow \\
\hline
$$

so:

Weak decays of charm

 FA - HIM, sea pig with a respectable $p_{T...}$)

Experimental tools

-
-

impa

 \bullet e= and/or \bullet

 \bullet charged \Box

Heavy Flavour Production in QCD

Heavy Flavour hadro-production in pQCD

$$
\int \left(\widehat{G}_{a/A}(x_a)\widehat{G}_{b/B}(x_b)\widehat{\sigma}_{ab\to c\overline{c}}(\widehat{s}=x_a x_b s)\widehat{D}_{D/c}(z)\right)=\sigma_{AB\to DX}
$$

⚫ factorization implies:

- ⚫ PDFs can be measured with one reaction...
	- say: Drell-Yan: $A+B \rightarrow e^+e^- + X$
	- ... and used to calculate a different one
		- ⚫ say: heavy-flavour production
- fragmentation independent of the reaction (e.g.: same in pp, e^+e^-)

Leading-order (LO)

⚫ Relevant diagrams: pair creation

 \bullet $q\overline{q} \rightarrow Q\overline{Q}$ (quark-antiquark annihilation)

 \bullet gg \rightarrow QQ (gluon-gluon fusion)

A few results

- ⚫ the partonic cross-section decreases with energy
	- faster for $q\overline{q}$ than for $q\overline{q}$ (which therefore is expected to dominate, except near threshold)
	- ⚫ the parton luminosities near threshold increase with energy, the cross section increases with the energy of the hadron-hadron collision
- ⚫ the pair cross section is proportional to:

$$
\frac{1}{\left[1+\cosh(y-\overline{y})\right]^2}
$$

 $y(\overline{y})$: rapidity of Q (\overline{Q})

 \rightarrow Experimentally: EHS, 360 GeV π p \rightarrow DDX

$$
\left(y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}\right)
$$

Next-To-Leading-Order (NTLO)

- ⚫ in absolute value, LO cross sections are typically underestimated by factor 2.5 - 3 ("K factor")
- ⚫ at NTLO: additional diagrams, such as:

- ⚫ the agreement with experiment for the total cross-section is good (within large bands...)
	- ⚫ e.g.: charm cross section at fixed target:

- results depend on the values of:
	- \bullet m_c, μ _R (renormalization scale), μ _F (factorization scale)
- ⚫ the result of an exact calculation would be independent of the choice of the scale parameters μ_{R} , μ_{F}
	- ⚫ the residual scale dependence is a measure of the accuracy of the calculation
	- e.g.: for b production at Tevatron $(\mu_R = \mu_F = \mu)$:

[Mangano: hep-ph/9711337]

Figure 5: Scale dependence of the inclusive p_T distributions for bottom quarks, in $p\bar{p}$ FA - HIM, \downarrow collisions at $\sqrt{S} = 1.8$ TeV. $\mu_R = \mu_F = \mu$.

- ⚫ it is important to match the PDFs with the order of the calculation.
- ⚫ e.g. one must avoid double counting:
	- ⚫ at LO:

Heavy Flavour in p/ π -A

Nuclear shadowing

- PDFs in the nucleus different from PDFs in free proton
	- ⚫ R = ratio of nuclear to nucleon PDFs
		- from Deep Inelastic Scattering (e-+p; e-+A), Drell-Yan (p+p, p+A -> $\ell^+\ell^-$ +X)

Nuclear dependence

- From pQCD one expects the cross section for production off nuclei to increase like number of nucleon-nucleon collisions ("binary collision scaling")
- \rightarrow proportional to number of nucleons (for min. bias collisions):

$$
\sigma_A^{(\varrho\overline\varrho)} = \sigma_0^{(\varrho\overline\varrho)} A^\alpha \quad \text{with } \alpha = 1
$$

- ⚫ modulo shadowing effects, expected to be small
- ⚫ Experimentally: not far... e.g. WA82:
	- D production in π +W/Si at SPS (340 GeV beam momentum)
	- ⚫ (relatively) central production

 $\alpha = 0.92 \pm 0.06$

$$
\textcircled{a} \ \langle x_F \rangle = 0.24
$$

p $x_F = p_z / p_{zmax} \approx \frac{-E_z}{\sqrt{2}}$ $F = P z \cdot P z$ 2 $\langle x_{F} \rangle = 0.24$ $x_{F} = p_{z} / p_{zmax} \approx$

 $"Fe$

Caveats...

i) α = 1 does not work down to pp!

$$
\sigma_0^{c\overline{c}} \neq \sigma_{pp}^{c\overline{c}}
$$

⚫ e.g.: MacDermott & Reucroft [PLB 184 (1987) 108] compare pA results with earlier hydrogen data from NA27, good agreement using:

$$
\sigma_{pA}^{c\bar{c}} = K_0 \sigma_{pp}^{c\bar{c}} A^{\alpha}
$$

$$
\alpha \approx 1, K_0 \approx 1.5
$$

⚫ note: similar situation for light flavours!

systematic study by Barton et al. [PRD 27 (1983) 2580], for various reactions at 100 GeV FT

e.g.: central for production of π , K, p from p on nuclear targets:

$$
\alpha \approx 0.6
$$
 with $K_0 \approx 1.5 \div 2$

- ii) lower α at large x_F ?
	- $\bullet~$ early beam dump experiments, sensitive at large x_F (max acceptance for $\mathsf{x}_\mathsf{F}\approx 0.5$) (in tracking experiments, typically max. acceptance for $x_F \approx 0.2$) e.g. WA78 [Cobbaert et al.: PLB 191 (1987) 456]
		- α for muons escaping dump (π -A at 320 GeV FT):

 $\alpha(\mu^{-}) = 0.83 \pm 0.06$ $\alpha(\mu^+) = 0.76 \pm 0.08$

note: α is known to decrease with x_F for light hadrons

Heavy Flavour Fragmentation

Fragmentation function

- **•** fragmentation function: $D_{D/c}(z)$
- depends only on fraction z
- $e.g.:$

/

$$
D_{D/c}(z) \propto \frac{1}{z[1-1/z-\varepsilon/(1-z)]^2}
$$

$$
D_{D/c}(z) \propto (1-z)^{\alpha} z^{\beta}
$$
Colangelo-Nason

e.g.: (parameters from fits to charm production at LEP)

- ⚫ How to measure the fragmentation function?
	- \bullet we don't measure the original $\mathbb Q$ momentum ...
	- but in ete we do know the Q energy (by energy conservation!)
		- $e.g.:$

• fragmentation functions are usually extracted from etemeasurements and then used for other collisions

• e.g.: fits to charm $x = 2E/\sqrt{s}$ distributions in ete: [Cacciari & Greco: PRD55 (1997) 7134]

- like for the PDFs, the fragmentation function has to be matched to order of pQCD calculation
	- e.g. at NTLO the Q can radiate:

⚫ so final energy before non-perturbative part of fragmentation lower than at LO \rightarrow harder fragmentation at NTLO • at NTLO: $\epsilon \approx 0.015$ \bullet at LO: $\epsilon \approx 0.06$

Q

Q

 γ

(e.g.: [Cacciari & Greco: PRD55 (1997) 7134])

Heavy Flavour at Tevatron

Beauty at Tevatron

- ⚫ Discrepancy between pQCD and data seems to have disappeared...
	- from...

- ⚫ From run I on, important improvements in accuracy:
	- ⚫ experiment (vertex detectors, high statistics)
	- ⚫ prediction (post-HERA PDF sets)
- Levels of stability over time:

Data Predictions

from [Cacciari et al: JHEP 0407 (2004) 033]

- ⚫ no large room for new physics any more...
- \rightarrow for more see, e.g.:

[Cacciari et al: JHEP 0407 (2004) 033, Cacciari: hep-ph/0407187, Mangano: hep-ph/0411020]

What about charm?

⚫ Nice data from CDF run II

⚫ roughly in agreement with full pQCD calculation (though prediction somewhat low)

[CDF: Phys.Rev.Lett. 91 (2003) 241804]

A curiosity (?): good agreement between data and prediction for bare quark

[Vogt: talk at SQM 2004]

Heavy Flavour in AA

Heavy flavour production in AA

binary scaling:

$$
d\sigma_{AA} = N_{coll} \times d\sigma_{pp}
$$

can be broken by:

- ⚫ initial state effects (modified PDFs)
	- ⚫ shadowing
	- k_T broadening
	- ⚫ gluon saturation (colour glass)
	- (concentrated at lower $\mathsf{p}_\mathsf{T})$
- **final state effects (modified fragmentation)**
	- ⚫ parton energy loss
	- ⚫ violations of independent fragmentation (e.g. quark recombination) (at higher p_T)

PHENIX pp

⚫ Excess wrt FONLL: Ratio: 1.72 ± 0.02 (stat) \pm 0.19 (sys) (0.3 < p_T < 9.0 GeV/c)

⚫ Similar situation also in CDF:

[A. Adare et al. (PHENIX) Phys.Rev.Lett. 97 (2006) 252002]

STAR v PHENIX pp

⚫ ~ a factor 2 discrepancy

[J. Lajoie (PHENIX) QM06]

STAR dAu, AuAu

⚫ Internal consistency

[[]M. Calderon (STAR) QM06]

STAR v PHENIX dAu, AuAu

Discrepancy pretty "stable" v system, p_T

- ⚫ looks like something very basic...
- \bullet of course then R_{AA} not too different...
- FA HIM, Seoul 18 April 2007 39

[A. Suaide QM06]

STAR v PHENIX: RAA

R_{AA} of non-photonic electrons

[A. Suaide QM06]

\rightarrow similar picture from STAR and PHENIX

→ R.Baier et al., Nucl. Phys. **B483** (1997) 291 ("BDMPS")

Energy loss for heavy flavours is expected to be reduced: i) Casimir factor

⚫ light hadrons originate predominantly from gluon jets, heavy flavoured hadrons originate from heavy quark jets

• C_R is 4/3 for quarks, 3 for gluons

ii) dead-cone effect

 \bullet gluon radiation expected to be suppressed for $\theta \cdot M_{\odot}/E_{\odot}$ [Dokshitzer & Karzeev, Phys. Lett. **B519** (2001) 199]

Large suppression at RHIC!

- n.p. electrons \sim as suppressed as expected for c only (no b)
- ⚫ yet, region above 3-4 GeV expected to be dominated by beauty...

Heavy Flavour in Alice

LHC

⚫ Running conditions:

L*max (ALICE) = 10³¹** *** L***int (ALICE) ~ 0.5 nb-1/year**

⚫ + other ions (Sn, Kr, O) & energies (e.g.: pp @ 5.5 TeV)

LHC is a Heavy Flavour Machine!

cc and bb rates

⚫ ALICE PPR (NTLO + shadowing)

Tracking

Full reconstruction of D decays

. ALICE Silicor

impact parameters \sim 100 μ m CM.

$D^0 \rightarrow K^-\pi^+$

⚫ expected ALICE performance

- \bullet S/B \approx 10 %
- \bullet S/ $\sqrt{(S+B)} \approx 40$ (1 month Pb-Pb running)

p_T - differential

Beauty to electrons

- ⚫ Expected ALICE performance (1 month Pb-Pb)
	- ⚫ e ± identification from TRD and dE/dx in TPC
	- ⚫ impact parameter from ITS

Expected performance on D, B R_{AA}

1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events)

should clarify the heavy flavour quenching story

Heavy Flavour v₂

- v_2 = azimuthal anisotropy \neq elliptic flow
- can get charm v_2 from
	- ⚫ direct charm elliptic flow
	- non-flowing c recombining with flowing matter
	- ⚫ azimuthally dependent energy loss

⚫ ...?

 \rightarrow in general, $v_2 \neq 0$ if charm "strongly coupled" with azimuthally asymmetric medium...

electron v2 at RHIC

⚫ puzzle: at QM`05 different results from PHENIX and STAR...

⚫ PHENIX:

subtraction of conversions by converter method and cocktail

⚫ STAR:

- ⚫ rejection of conversions by inv. mass combinations
- ⚫ @ RIKEN-BNL heavy flavour workshop in december STAR said measurement affected by "too much photonic background"

Charm v_2 at LHC?

- ⚫ Full reconstruction of D decays at LHC
	- ⚫ qualitatively different measurement from non-photonic electrons!
	- ⚫ better correlation with original heavy-quark momentum
	- ⚫ b vs c
- ⚫ First indications from preliminary studies in ALICE: expected error ~ few % (D v $_{2})$

D_s +

- \bullet D_s^+ as probe of hadronization?
- \bullet from string fragmentation: $c\overline{s}$ / $c\overline{d} \sim 1/3$
	- after decays: D_s^+ (cs) / D^+ (cd) ~ 0.6
- from recombination: $c\overline{s}$ / $c\overline{d}$ ~ N(\overline{s}) / N(\overline{d}) \rightarrow how large at LHC?
- ⚫ experimentally accessible?
	- D⁺ (c $\tau \sim 310 \ \mu m$) \rightarrow K⁻ π ⁺ π ⁺ with BR ~ 9.2 %
		- \bullet in Alice: probably similar performance as for $\mathsf{D}^0\to\mathsf{K}^-\pi^+$
	- \bullet D_s (ct ~ 150 µm) \rightarrow K⁻K⁺ π + with BR ~ 4.4 %
		- \bullet but mostly resonant decays: $\Phi \pi^*$ or $\textsf{K}_{\textsf{0}}^\star \textsf{K}^\star$ (non resonant only 20 %) \rightarrow favours bkgnd rejection (for D+ \rightarrow K $\pi^*\pi^*$, non-resonant ~ 96 %)
	- \rightarrow may be well visible (expecially if D $_{\rm s}^{\ast}/{\rm D}^{\ast}$ is large!)
- D_s v₂ would be particularly interesting!

Heavy flavour jets?

- For high energy jets: Nb ~ Nu,d
- \rightarrow heavy flavour rich!
- ⚫ b-tagged jets?
- \rightarrow study quenching of b jets!

Away side cone?

⚫ Collective behaviour opposite to jet?

⚫ eg: Mach cone

[Casalderrey-Solana, et al.: hep-ph/0411315] [Stocker: Nucl.Phys. A750 (2005) 121])

⚫ What happens with big-fat-heavy quark jets?

Modified Mach cone?

- Heavy quarks at moderate p_T move with substantially lower speed
- e.g.: for beauty, taking:
	- $c_s^2 = 0.2$
	- $m(b) = 4.5 GeV$
- b quark is "subsonic" for $p < 2.25$ GeV
- \rightarrow for p \sim 3-4 GeV, shock wave angle $\sim 40^{\circ}$
- [FA, E Shuryak: J.Phys. G31 (2005) 19]

Now: observing THAT would be something!

Conclusion

- ⚫ Heavy flavours kindly provide us with a very promising tool to study the properties of the strongly interacting medium produced in ultra-relativistic nucleus-nucleus collisions
- LHC is the place to be \rightarrow very high rates
	- $\bullet\,$ p_T reach
	- ⚫ recombination?
	- ⚫ jets?
- ⚫ ALICE is well equipped for heavy flavour physics