R_{CP} Measurement with Hadron Decay Muons in Au+Au Collisions at √s_{NN}=200 GeV

> WooJin Park Korea University For the PHENIX Collaboration

Contents

Physics motivation - from p+p to Au+Au PHENIX Experiment • Muons from hadron decay Analysis detail – decay muon analysis - Normalized vertex distribution - Decay slope measurement Summary / outlook

PHENIX single muon physics

- Study particle production in (polarized) pp, pA and AA collisions at forward (backward) rapidity
 - Light hadrons: How dense is the matter? channel)
 - Heavy flavor: How strongly coupled is the matter? nnel)
- Probe nuclear medium effects:
 - Normal nuclear medium (dAu)
 - Hot and dense nuclear medium (AuAu)
- SPIN measurement: gluon polarization

Physics motivation - from p+p to Au+Au

p+p collision

- Provide baseline reference for heavy-ion measurements
- Test of pQCD
- p+A collision (d+Au at RHIC)
 - Probe Initial-State Effects / Normal nuclear medium(Cold nuclear medium) effect
 - Shadowing / saturation @ low x_A
 - p_T broadening / energy loss
 - Modifications of baryon production
- Au+Au collision
 - Hot and dense nuclear medium
 - QGP / phase transition to the new state of matter
- Cu+Cu collision
 - can give much better N_{part} and N_{coll} precision
 - RHIC provided Cu+Cu collisions at $\sqrt{S_{NN}}=200, 62, 22 \text{ GeV}$

Light hadron's Differential multiplicity in p+p

hep-ex/0609032

- PHENIX Run2 p+p data hadron decay muons
- Provide baseline reference for d+Au / Au+Au measurement

Physics Motivation – d+Au

gluons in Pb / gluons in p

From Eskola, Kolhinen, Vogt Nucl. Phys. A696 (2001) 729-746. Three rapidity ranges probe different momentum fraction of Au partons

PHENIX North arm (y > 1.2) : small X ~ 0.003 Shadowing/suppression regime

PHENIX Central arm (y ~ 0) : intermediate X ~ 0.020

PHENIX South arm (y < -1.2) : large X ~ 0.090 Anti-shadowing/Cronin regime

R_{CP} in d+Au Collisions - PHENIX

PHENIX - Phys. Rev. Lett. 94, 082302 (2005)

d direction

Au direction

R_{dAu} in d+Au Collisions

Brahms PRL 93 (2004)

Cronin-like enhancement at $\eta = 0$ Clear suppression as η changes from 0 to 3.2

Measurements very consistent with initial-state effects estimated by CGC.

Physics Motivation – Au+Au

 R_{CP} : Ratio between the central and peripheral yields scaled by the number of binary collisions, where it is assumed that peripheral is similar to pp

- Two different effects can be expected (vs eta)
 - 1. Low energy density(less energy loss) could make R_{CP} high
 - 2. New regime of parton physics at low-x(CGC).
 - Gluon saturation at low-x has been predicted to suppress hadronic yields
 - For Au+Au collisions, $R_{CP} \ll 1$ can be expected
 - PHENIX can measure R_{CP} with mesons

R_{CP} measurement

• Advantage: a lot of detector systematics cancel.

• Disadvantage: most peripheral bin of 60-93% still corresponds to 14~15 collisions and not all nuclear effects might be eliminated.

Light quark pT suppression

Nuclear modification factor:

$$R_{AA}(p_T) = \frac{\frac{dN^{AA}}{dp_T}}{\frac{T_{AA}d\sigma_{inel}^{pp}}{dp_T}}$$

Suppression, *R*_{AA}<<1, indicates strong coupling of quarks to the produced medium.

Phys. Rev. Lett. 91, 072301 (2003)

Photons not suppressed by the medium

Mesons suppressed by medium by factor of ~5

The PHENIX detector

 Optimized for lepton measurements

□ Electrons - central arms : $|\eta| \le 0.35$ $p \ge 0.2$ GeV/c

□ Muons - forward arms : $1.2 < |\eta| < 2.4$ $p \ge 2 \text{ GeV/c}$

two central electron/photon/hadron spectrometers

two forward muon spectrometers

The PHENIX Detector

241 mb⁻¹ Au+Au data at $\sqrt{s_{NN}}$ =200 GeV at 2004~2005 RHIC Run4

Major Sources of Inclusive Tracks

Identification of muons from hadronic decay

where, L is distance from the collision point to the absorber

Z vertex Dependence

Normalized Vertex Distribution

Normalized vertex distribution can be fit with a linear function : $\alpha \cdot z + \beta$

Decay muon Rcp measurement

$$R_{CP} = \frac{\frac{1}{N_{binary}^{central}} \left(\frac{d^2 N}{d\eta dp_T}\right)^{central}}{\frac{1}{N_{binary}^{peripheral}} \left(\frac{d^2 N}{d\eta dp_T}\right)^{periperal}}$$

The normalized muon event vertex distribution :

$$\frac{1}{N_{measured}^{MB}(Z)} \frac{d^3 N(Z,\eta, P_T^{\mu^{\pm}})}{dP_T^{\mu^{\pm}} d\eta dZ} \approx \{\alpha(P_T,\eta) \cdot (Z - Z_{eff}^0) + \beta(P_T,\eta)\}$$

Decay muons R_{CP}:

$$R_{CP}^{decay}(p_T,\eta) = \frac{\alpha^{central}(p_T,\eta) \cdot \varepsilon_{reco}^{peripheral} / N_{binary}^{Central}}{\alpha^{peripheral}(p_T,\eta) \cdot \varepsilon_{reco}^{central} / N_{binary}^{Peripheral}}$$

Decay slope measurement

 decay slope should be measured on every centrality, P_T and eta bins

- north and south arm show opposite slope
- decay slope corresponds to $\frac{d^2 N}{dP_r d\eta}$
- (efficiency corrected) decay slope ratio between central and peripheral bins is R_{CP}

centrality

Event centrality was measured by BBC and ZDC correlation. Number of binary collisions was calculated by Glauber model

Differntial multiplicity (vs P_T)

Our approach works fine for both arm!!

Decay slope measurement(vs eta)

R_{CP} vs Number of Binary Collisions

Central

Peripheral 22

R_{CP}/R_{AA} vs p_{T}

Statistical error bar only

Work in progress

R_{AuAu} and R_{CP} from Brahms

- Low pT part scale with the number of participants (soft collisions)
- strong suppression in central collisions (f. 4)
- the suppression can not be explained by hadronic energy loss
- similar behavior at η 0 and 2.2 → Rapidity distribution will not change as a function of centrality.
- R_{CP} similar to R_{AA} (no medium effect in semiperipheral colls.)

PHENIX Cu+Cu results

Cronin effect might affect a lot

Summary / Outlook

- R_{CP} measurement in Au+Au collision is important issue to understand nuclear effects
- Suppression at forward rapidity/enhancement at backward rapidity in d+Au system
- Strong suppression in central Au+Au collision
- Suppression in Au+Au strong coupling of quarks to the produced medium
- No big change of NMF with eta in Au+Au
- PHENIX Run4 Au+Au full data set will be served in two months
- New p+p results with much higher statistics(factor of 100) will be come out in a near future(RHIC run5)

Backup Slides

Going to higher η in Gold-Gold

Polleri and Yuan (nucl-th/0108056)

Higher rapidities

- means smaller medium density => less supression
- jet-quenching in longitudinally expanded source
- Nch $|\eta = 2.0 < Nch|\eta = 0$

- initial and final-state effects have different dependence on rapidity; final-state effects are maximal at mid-rapidity whereas initial-state effects are enhanced in forward region

Efficiency Correction

- Efficiency can be calculated by embedding method (simulation + real data)
- Efficiency decrease as vertex goes to the detector
 - opening angle varies as a function of vertex
 - acceptance and multiplicity can change
 - combinatorial background
- Vertex bin by bin correction needed

Efficiency – North arm

🔽 ImageMagick: results_efficiency_fit_north_w_minbias.gif 1.5 < pT <2.0 (GeV/c) 2.0 < pT <2.5 (GeV/c) 2.5 < pT <3.0 (GeV/c) 0<Centrality<20</p> 0<Centrality<20</p> 0<Centrality<20</p> 50 50 50 cy(%) Efficiency(%) 20<Centrality<40</p> 20<Centrality<40</p> 20<Centrality<40</p> 45 40 35 45 40 35 š 45 40<Centrality<60</p> 40<Centrality<60</p> 40<Centrality<60</p> 40 35 Efficie 60<Centrality<93 60<Centrality<93 60<Centrality<93</p> MinBias MinBias MinBias 30 E 30 E 30Ē 25 E 25 20 15 10 10 25 20 15 10 20 E 15 ىھىچارە 0 Vertex(cm) Vertex(cm) Vertex(cm) 3.0 < pT <3.5 (GeV/c) 3.5 < pT <4.0 (GeV/c) 4.0 < pT <4.5 (GeV/c) 0<Centrality<20</p> 0<Centrality<20</p> 0<Centrality<20</p> 50 50 50 ncy(%) 1cy(%) 45 40 35 45 40 35 Efficiency(%) 45 40 35 20<Centrality<40</p> 20<Centrality<40</p> 20<Centrality<40</p> 40<Centrality<60</p> 40<Centrality<60</p> 40<Centrality<60</p> 60<Centrality<93</p> 60<Centrality<93</p> 60<Centrality<93</p> MinBias MinBias MinBias 30 30 30 25 25 25 20 20 E 15Ē 15 E 10 5 10 5 10 E 0 E 25 40 20 0 10 -20 -10 0 10 -20 -10 Vertex(cm) Vertex(cm) Vertex(cm) 4.5 < pT <5.0 (GeV/c) 0<Centrality<20</p> 50 cy(%) 20<Centrality<40</p> 40<Centrality<60</p> Efficie 60<Centrality<93 MinBias

Efficiency – South arm

🔽 ImageMagick: results_efficiency_fit_south_w_minbias,gif

Vertex(cm)

R_{CP} on d+Au collisions - **BRAHMS**

Change of R_{CP} from mid- to forward rapidities is stronger for central collisions than for semi-peripheral collisions

High pt suppression

Brahms PRL 91(2003)

- approximate binary scaling in semiperipheral collisions

- strong suppression in central collisions (f. 4)

similar behaviour at η 0 and 2.2 -> source extended to η ~2
longitudinal expansion at y >0

- Rcp similar to Raa (no medium effect in semi-peripheral colls.)

- the suppression can not be explained by hadronic energy loss

Rcp for Au+Au h+, h- at $\eta \sim 3.2$

Centrality bins using multiplicity in $|\eta| < 2$ Glauber Model $\langle N_{coll} \rangle$ for 0-10% ~880 $\langle N_{coll} \rangle$ for 40-60% ~ 78 $\langle N_{coll} \rangle$ for 50-90% ~ 21

persistent over 3 units in η
no strong η dependency
room for initial-state effects
analysis of Raa in progress

Suppression at Forward Rapidities at 200 GeV

NMF Dependence on Centrality

 The higher energy system begins to look more like pp collisions for less central events.

• The lower energy system shows Cronin enhancement similar to what is seen at SPS energies.

PHENIX muon arms "x" coverage

Particle production in the d direction (north) is sensitive to the small-x parton distribution in the Au nuclei; whereas in the gold (south) is sensitive to the large-x in Au

From Eskola, Kolhinen, Vogt Nucl. Phys. A696 (2001) 729-746.

37