Single µ production at forward rapidity by PHENIX

Y. Kwon (Yonsei University) for the PHENIX collaboration

Contents

Motivation : why forward $lepton(\mu)$? Detector Setup : how to detect μ ? Analysis : how to separate signal/background? Results : Forward µ production, p+p, d+Au & Au+Au @ 200A GeV Conclusion & outlook

Why forward lepton(µ)?

Experimental

- Lepton :
$$\frac{l}{h} \approx 10^{-3} \sim 10^{-4}$$

→ Probe of rare signals

- Forward?

Completes measurement at
mid-rapidity (unique to PHENIX
at RHIC)

PHYSICAL Review Letters

14 January 2002

Volume 88, Number 2

Neater Scheriptics Copy Library or Other Institutional ConPrelabilied Unit 2007

Published by The American Physical Society

PHYSICAL Review Letters

Articles published week ending 15 AUGUST 2003

Volume 91, Number 7

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2008

APS Published by The American Physical Society

Heavy flavor to leptons? -> Major source of hard prompt leptons

Semi-leptonic decays contribute to single lepton spectra!

Hard Processes?

Factorization theorem $d\sigma [A+B\rightarrow H+X] = \sum_{ij} \mathbf{f}_{i/A} \otimes \mathbf{f}_{i/B} \otimes d\sigma [ij\rightarrow cc+X] \otimes \mathbf{D}_{c\rightarrow H}$ $f_{i/A,}f_{j/B}$: distribution fuction for parton $i\mathbf{D}_{c \rightarrow H}$: fragmentation function for c $\mathbf{R}_{d_{L}}$ charged $d\hat{\sigma}$ [ij $\rightarrow c\bar{c}+X$] : parton cross section neutral pions +...: higher twist (power suppressed 1.4 1.2 by Λ_{0CD}/m_c or Λ_{0CD}/p_t if $p_t \gg m_c$): e.g. "recombination" 0.8

Application to nuclei:

$$\begin{array}{l} f_{i/Au} \approx 79 \; f_{i/p} + 118 \; f_{i/n} \approx 197 \; f_{i/N} \\ f_{i/d} \approx f_{i/p} + f_{i/n} \approx 2 \; f_{i/N} \end{array}$$

Binary scaling not working for high pt particles in central AuAu collisions PHENIX: PRL, 91, 072303 (2003)

how to detect µ?

PHENIX

Optimized for Rare probes $e^{\pm}, \gamma, h: central arms$ measurement range: $|\eta| \le 0.35$ $p \ge 0.2 \text{ GeV/c}$

 $\square \mu^{\pm}, h: forward arms$ $\square measurement range:$ $1.2 < |\eta| < 2.4$ $p \ge 2 \ GeV/c$

two central electron/photon/hadron spectrometers

two forward muon spectrometers

Acceptance

Detector schematics

Top : central arm

Bottom : muon arm

How to separate signal/background?

u-measurement, Sources

- 1 : Hadrons, interacting and absorbed (98%),
- 2 : Charged $\mathbb{R} \pi/K's$, "decaying into μ " before absorber ($\leq 1\%$),
- 3 : Hadrons, penetrating and interacting ("stopped")
- 4 : Hadrons, "punch-through",
- <u>5 : Prompt µ, "desired signal"</u>

Decay µ's & Punch-through's?

u-measurement, Sources

2 : Charged $\mathbb{Z} \pi/K$'s, "decaying into μ " before absorber ($\leq 1\%$),

µ-measurement, Signal composition

Generator (Decay μ + punch-through) 1. Light hadron measurement by PHENIX central arm (y = 0) 2. Gaussian extrapolation in rapidity to muon arm acceptance ($\sigma = 2.5$) 3. Simplified spectrometer geometry.

Decay µ spectra

p + p @vs = 200 GeV, η = 1.65, RUN2 FINAL

10 data points for μ^+ and for μ^- correspond to the slopes for 10 p_T bin ($1 < p_T < 1.2$, $1.2 < p_T < 1.4$, ..., $2.8 < p_T < 3.0 \text{ GeV/c}$). Each slope represents amount of decaying light hadrons, and good match occurs between the generator prediction and the measurement up to absolute normalization (5%). Hence we can determine decay μ component precisely.

u-measurement, Sources

1 : Hadrons, interacting and absorbed (98%),

3 : Hadrons, penetrating and interacting ("stopped") 4 : Hadrons, "punch-through",

Flux of hard muons in µ spectrometer

Hadrons, penetrating and interacting ("stopped")

Momentum distribution of the tracks with DEPTH 4

All energy lost to ionization

Large momenta to reach the last Muld layer, but hadron interaction in the last absorber layer to stop before last Muld layer.

Interacting hadrons

Forward µ production, p+p & Au+Au @ 200A GeV

Obtained prompt µ spectra

y = 1.65, p+p @ \sqrt{s} = 200 GeV, RUN2 FINAL

Comparison : FONLL

μ^{\pm} & NMF, d+Au at $\sqrt{s_{NN}}$ = 200 GeV

South : Au-going direction, North : d-going direction

Prompt μ 's (from heavy quarks)

Decay μ , Au + Au @ $\sqrt{s_{NN}} = 200 GeV$

Inclusive (Decay/Prompt μ & Punch-through), v₂

Conclusion & outlook

- New forward lepton measurements are emerging at RHIC.
- Study of forward light/heavy flavored hadron production is possible from the measurement.
- FONLL underpredicts forward prompt lepton production within marginal significance.
- First (limited) results on R_{dAu}, R_{CP} and V₂ shown.

Signal/Background

Sources of μ candidates

1. Decay μ 's is important at all p_T .

2. Punch-through is small, but important due to large uncertainty. 3. Prompt μ signal comparable to decay μ when $p_T \sim 2(GeV/c)$.