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f1. Lattice QCD
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e Observables are given by the ratio of two integrals

e existence of integral?

e a regulator is necessary

e discretization of space-time

e numerical integration (Monte Carlo method)
e continuum limit (a — 0)

e finite volume effect (large enough spacetime)
e realistic quark mass o

-p.5



-

e three(more ?) different phases of QCD states

e hadronic phase

Vir) = —% + or (2)

e quark-gluon plasma (QGP) phase

Vir) = —%6_‘” + %(1 — e H) (3)

e color superconducting phase

o |
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f2. Lattice QCD In Finite
Temperature

e No problem with simulation! it is “just” difficult

e Recent focus on realistic simulations
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e Example: RBC-Bielefeld, PRD74, 054507(2006),
hep-lat/0608013

-

o Ny =2+ 1, p4fat3 staggered quark action, tree-level
Symanzik improved gauge action

o N =4,6. Ny = 8,16, 24, 32

o my = 0.00325 ~ 0.05(N; = 4),0.004 ~ 0.016(N; = 6)
(150 < my < 500)MeV

o ms = 0.01 ~ 0.065(N; = 4),0.04(N; = 6)

R

Exact RHMC algorithm

-p.8



V. THE TRANSITION TEMPERATURE

To obtain the transition temperature we use the results
for the scales ry/a and /&a obtained from fits to the static
quark potential. In cases where zero temperature calcula-
tions have not been performed directly at the critical

lattice parameters (#i, #,, & _). to the charal and continuum
limit using an ansatz that takes into account the quadratic
cut-off dependence, (aT)* = 1 /N2, and a quark mass de-
pendence expressed in terms of the pseudoscalar meson
mass,
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coupling but at a nearby S-value we use Eq. (12) to o (13)
. PP . =T r 'y
determine the scales at 3_(fiy, i, N_). The ransition tem- Y =T.ry, T/,
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FIG. 7 (color onling). T,.ry (left) and T, /. /o (right) as a function of my r, on lattices with temporal extent N, = 4. #fi, = 0.063
(squares ) and i, =01 (triangles) as well as for N, =6, s, = 0.04 (circles). Thin error bars represent the statistical and systematic
error on ry/a and fera. The broad error bar combines this error with the error on B,. The vertical line shows the location of the
physical value m ry = (L321(5) and its width represents the error on ry. The three parallel lines show results of fits based on Eq. (13)

with d = LO8 for Ny =4, 6 and N; — o0 {lop (0 bottom).
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o 7. =192(7)(4), rapid cross-over
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f3. Lattice QCD with Finite Baryon
Density

e “Sign problem” with lattice formulation of finite baryon
density

e With finite chemical potential QCD lagrangin is complex
M(M) = ’Y/LD/L - M+ [0 (4)
can’t find A for MT(n) = AM (p)A~1

e Monte Carlo simulation is difficult (importance sampling
Lmay be accomplished only after large cancellation)
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e Recently devised methods for small baryon density
(small 1, chemical potential) region

(a) Multi-parameter reweighting
(b) Taylor expansion of observables around ;. = 0
(c) Imaginary chemical potential method

e For example, critical end point at (7', ug) ~ ( 162, 360)
from (2+1 flavor) (a) method

e continuum limit, chiral extrapolation, finite volume effect

o |
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e Hydrodynamic quantities: slope of various spectral
functions at zero frequency limit

-

e bulk viscosity, shear viscosity, electric conductivity, etc

e Swansea-Sejong collaboration, hep-lat/0703008
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FIG. 4: Default model dependence of piw) /wd for Ny =
24 (hot) and 16 {(wvery hot) in the low-energy region. We
show results for W, = 1000, 2000 and & = 1.0, 0.5, 0.1 at fixed
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Discussion

Real world

s
mu,d

scenario | for phase diagram in 7', i1, mg,
Ph. de Forcrand and O. Philipsen, hep-lat/0607017
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Real world ——

crossover 1st> o

scenario Il for phase diagram in 7', i1, m,
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Potts, 723

95 first order
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HQ QCD - Potts result for phase diagram in 7', i1, m,

L S. Kim and Ph. de Forcrand, PoS, Lat2005, 166 (2006), J
hep-lat/0510069



