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EM wave

➢ Theory: Maxwell (1873)

➢ Acceleration of electric 
charge

➢ Detection : H. Hertz (1888)

Grav. wave

➢ Theory : Einstein (1916)

➢ Acceleration of matter 
( transverse & spin 2 ) 

➢ Evidence : Taylor & Hulse
(’79)

➢ Detection : K. Thorne(?)

LIGO(?)

?
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➢ Gravitation Wave from Binary Neutron Star

Effect of Gravitational 
Wave Radiation 

1993 Nobel Prize
Hulse & Taylor

B1913+16 
Hulse & Taylor (1975)

LIGO was based on 
one DNS until 2002 
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GW Sources

- BH-BH, NS-NS mergers

- Cosmological perturbations

- Supernovae

Grav. wave pattern: 

“Urgent Demand For GW 
Detection !!”
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NR and Gravitational Wave Detection

Joseph Weber (1960)
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Network of Interferometers

LIGO GEO Virgo

TAMA

AIGO

LIGO Louisiana 

4km
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NS-NS, NS-BH, BH-BH Binaries as sources for LIGO

(Laser Interferomer Gravitational Wave Observatory)

Observations
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➢NS (radio pulsar) which coalesce within Hubble time

(1975)

(1990)

(2003)
(2004)

(2004)

(1990)
(2000)

Globular Cluster : no binary evolution

White Dwarf companion

Not important
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➢Due to J0737-3039  
LIGO detection rate 
was increased by 8 !

➢weak radio signal:
1/6 of B1913+16

➢short coalesce 
time:
1/2 of B1913+16 

➢Initial LIGO 
0.035 event/year

➢Advanced LIGO
187 event/year

Kalogera et al. (2004)
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• All masses are < 1.5 M⊙

• 1534, 2127: masses are within 1%

• J0737, J1756: DM = 0.1 - 0.2 M⊙
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➢R0=17 Mpc (initial LIGO), 280 Mpc (advanced LIGO)
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Science 308 (2005) 939
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2023/1/10 ➢13

Short-hard GRBs

➢hard

➢soft

➢short ➢long

➢1000➢1➢0.01

➢No optical counterpart 
(?)

➢Origin

⚫ Neutron star merger?

⚫ Magnetar flare?

⚫ Supernova?

➢BATSE

➢Sample
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Wanted

➢ How to distinguish sources from GW 
observations?

➢ What is the GW pattern ?

◆ NS-NS binaries : several

◆ NS-BH binaries : some clues

◆ BH-BH binaries : expected in globular 
clusters where old-dead stars (NS, BH) are 
populated. 
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➢ Perturbative analytic method:
good during the early stages of a merger &
later stages of ringdown.

➢ Numerical solution is essential:
during last several orbits, plunge, early stages of 
ring down.

➢ Problem:
no code to simulate a nonaxisymmetric collisions 
through coalescence & ringdown

Why numerical approach ?

Introduction



A bit of history : Simulations

• Head-on collision of two equal mass black holes: early 70’s
DeWitt (’76), Cadez (’71), Smarr (’75,’76,’77,’79), Eppley (’71), 

Anninos et al. (’95) 

• 3-dim grazing collision of two BHs (2001) 
Alcubierre, Benger, Brugmann, Lanfermann, Nerger, Seidel, and 

Takahashi 

• Single relativistic star (2002)
Font, Gooddale, Iyer, Miller, Rezzolla, Seidel et al.

• Binary black hole coalescences (2005) 
Pretorius (0507), Campanelli (0511), Baker, Centrella, Dae-Il Choi,

Koppitz, van Meter (0511), Diener et al. (0512)

Introduction



F. Pretorius, PRL 95, 121101 (2005)

Baker, Centrella, D.-I. Choi, Koppits, van 
Meter, PRL 96, 111102 (2006)

Campanelli, Lousto, Marronetti, Zlochower, 
PRL 96, 111101 (2006)

2005

2006

2006
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Best (?) work until 2005

Evolution of Binary Black-Hole Spacetimes

F. Pretorius, PRL 95, 121101 (2005)

2005



Initial data by punctures (Brill-Lindquist conformal factor yBL ) 

➢Brandt & Brugmann, PRL 78, 3606 (1997)

➢ Traditionally  “y BL = 1/a “ is factored out & handled 

analytically

➢ Puncture remain fixed on the grid (during evolution)

Evolved numerically

2005
Traditional treatment

curvaturemetric



➢ Problem in traditional treatment

1. As the distance between BHs shrinks, certain 
component of the metric must approach zero
=> causing other quantity diverge
=> kill the run before common horizon forms

2. Corotating coordinate frame causes superluminal 
coordinate speed at large distances 

2005



this paper: generalized harmonic coordinates

➢ Capable of evolving binary systems for enough 
time to extract information about the orbit, 
merger, and gravitational waves

➢ e.g., evolution of binary: 
2 equal mass, nonspinning BHs, 
➔ single plunge orbit, merger, ringdown
➔ Kerr BH (a=0.7)
➔ 5% of initial rest mass radiated as GW
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Features of generalized harmonic coordinates (I)

1. discretized scheme ➔ minimize constraint eq 
(Evolved quantities ➔ covariant metric elements, 

harmonic source, matter functions)

2. Compactified coordinate ➔ boundaries at spatial 

infinity (correct boundary)

3. Adaptive mesh refinement ➔ relevant length scale

4. Dynamical excision ➔ track the motion of BH 

through grid (using harmonic gauge)

5. Addition of numerical dissipation ➔ control high-

frequency instabilities

2005



Features of generalized harmonic coordinates (II)

1. Time slicing ➔ slows down the collapse of the 

lapse

2. Addition of “constraint-damping”➔ very important 

effect on how long a simulation with black holes 
can run with reasonable accuracy.
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Discretize Einstein field equation

H: source function (gauge freedom)

T: matter stress tensor

N: unit hypersurface normal vector

G: Christoffel symbols
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➢ Constraint

➢ Evolution of source function
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Initial conditions

➢ Initial data: scalar field gravitational collapse
(at t=0: two Lorentz boosted scalar field profiles)

➢ initial spatial metric & its first time derivative: 
conformally flat

➢ Maximal condition

➢ Harmonic condition: H=0
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Three different grid hierarchies: for efficiency

➢ Low resolution: 32^3 with up to 7 additional 
levels of 2:1 refinement

➢ Medium resolution: one additional refinement 
during the inspiral and early phases of the 
merger

➢ High resolution: upto 10 levels of refinement 
during the inspiral and early ringdown phase.
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Initial parameter are chosen such that the BH 
would merge within roughly one orbit.

e: eccentricity
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ADM Mass: Arnowitt-Deser-Misner mass (total energy of 
binary system)

➢ 15% of total scalar field energy leaves the orbit in 
light crossing time of the orbit.

2005



BH Mass : Smarr formula (A: horizon area)

Kerr parameter (ratio of the polar to equatorial proper 
radius of the horizon)
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Numerical errors

➢ Two methods to determine “a”➔ agree in average
“Dynamical horizon framework” (rotation axis is 
orthogonal to BH) & using “Cr”
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➢Emitted gravitational wave (medium resolution)

Note shift in time !
(not light travel time)

Newman-Penrose scalar
Numerical 
Error

25 M0=light travel time
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Total energy emitted

➢ Numerical error in Y will inflate !

➢ To reduce error: filter high spherical 
harmonics (> l=6)
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➢Radiated GW energy

➢ From summation from Y : 
4.7% (r=25), 3.2% (r=50), 
2.7% (r=75),    2.3% (r=100)

➢ From final & initial horizon mass difference
➔ 5% (high resolution), 11% (low resolution)
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works to be done (as of 2005)

➢ Inprovement of the accuracy 
(in particupar the gravitational wave)

➢ explore large classes of initial conditions
(separation, initial mass, initial BH spin, …)

➢ Extract more geometric informations about 
the nature of the merger event from the 
simulation.

2005



New Achievement in 2006

Baker, Centrella, D.-I. Choi, Koppits, van Meter, PRL 
96, 111102 (2006)

Campanelli, Lousto, Marronetti, Zlochower, PRL 96, 
111101 (2006)

2006

2006



New features in these two works

➢ Moving black holes through grid 

without excision

2006



Work by D.-I. Choi group

➢ Evolution by HAHNDOL code

Gravitational-Wave Extraction from an Inspiraling 
Configuration of Merging Black Holes

Baker, Centrella, Choi, Koppitz, van Meter

PRL 96, 111102 (2006)

2006



Initial data by punctures (Brill-Lindquist conformal factor yBL ) 

➢Brandt & Brugmann, PRL 78, 3606 (1997)

➢ Traditionally  “y BL = 1/a “ is factored out & handled 

analytically

➢ Puncture remain fixed on the grid (during evolution)

Evolved numerically

2006



➢ Problem in traditional treatment

1. As the distance between BHs shrinks, certain 
component of the metric must approach zero
=> causing other quantity diverge
=> kill the run before common horizon forms

2. Corotating coordinate frame causes superluminal 
coordinate speed at large distances 

2006



➢ New approach

Evolve full conformal factor y

➢ Initial setup: centers of BHs are not at the 
grid points

➢ Initially, effectively regularize the puncture 
singularity by taking numerical derivatives 
of conformal factor

➢ During evolution: BHs remain in the z=0 
plane

➢ grids points in cell-centered implementation.
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HANDOL code : cell-centered implementation

➢ Innermost refinement region is a cube 
stretching from -2M to 2M in all 3-direction

➢ Punctures are placed in the z=0 plane

➢ Impose equatorial symmetry

➢ Resolution M/16, M/24, M/32

➢ Outer boundary 128M

➢ 4th-order finite differentiating

➢ Highest resolution: 40 hours on 256 
processors of SGI Altix 3000 machine
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Free evolution of punctures

➢ Possible by Gamma-freezing shift vector
which drives coordinates towards quiescence 
as the merged remnant BHs also becomes 
physically quiescent.

Eliminate zero-speed mode 
(to destroy “puncture memory” effect)

new
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➢Hamiltonial constraint error at two times

distance

No growing in time
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Position of apparent horizons at t=0,5,10,15,20M

apparent horizons
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For M/32 resolution, no difference at r=20, 40M !
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convergence

2006

Large uncertainty due to 
non physical pulse before 
GW passes by



Mass-Energy

good agreement 
after radiation

ADM mass due to 
nonphysical pulse in 
the gauge evolution

E: radiation energy
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Pretorius’s results 

For comparison

C.-H. Choi’s code (2006) gives better results (later t ?)

2006
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Radiated energy (E) & angular momentum (J) 
by gravitional wave

➢ 3% of initial mass-energy is in gravitational wave

➢ Good energy conservation during the evolution

➢ Future work: adaptive mesh refinement implementation

Conclusion
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Accurate Evolutions of Orbiting Black-Hole 
Binaries without Excision

Campanelli, Lousto, Marronetti, Zlochower

PRL96, 111101 (2006)
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Gauge condition

Cf) Dr. Choi’s group

2006

2006



trajectories from t=0 to 18.8 M (in 2.5 M step)

2006



grid resolution (h)

Weyl scalar

very good agreement
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Horizon mass reduction is in excellent agreement 
with the calculated radiated energy !
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Computing time

Largest run (h=M/27)

➢ 2882  X 576 grid points (64 GB)

➢ 2 weeks on 16 nodes (dual 3.2 GHz Xeon 
processors)

Dr. Choi’s group

➢ Highest resolution: 40 hours on 256 processors 
of SGI Altix 3000 machine

➢ Twice computing time per processor 

2006
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Future plan

➢ Larger initial separations (several orbits before 
merging)

➢ Thin-sandwidth & post-Newtonian initial data set

➢ Unequal-mass black-holes & their gravitational 
kick

➢ Highly spinning black-holes

2006



Prospects

➢ Two recent works without excision give more 
stable (reliable) results !!

➢ Future possibilities in numerical relativity !

➢ Colliding Neutron Stars: 
- Equation of States
- QGP formation in the process of collision (?)

Prospects

Physics of Heavy Ion 
Collisions



Prospects

✓ 2004.12 first HIM meeting

✓ Bimonthly meeting

✓ 1st ATHIC (2006.06)

✓ 2nd ATHIC (2008.10)

✓ 2005-2007: APCTP Topical 
Research Program

✓ 2004: Gravitational Wave 
Working Group

✓ 2005.3.16: Kick-off 
meeting

✓ 2005.6.28: Korean 
Numerical Relativity 
Group

✓ Monthly mini-workshops 
and Schools

✓ KISTI (Super Computing 
Center)

✓ APCTP Topical Research 
Program

NR Group vs HIM (since 2004)


