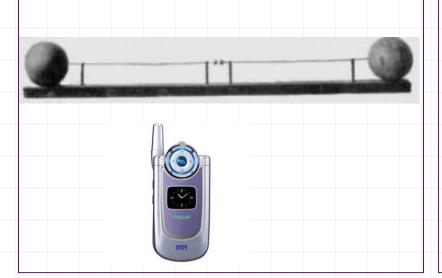
HIM@Korea.U.

Current Status of Numerical Approaches

Cosmological Heavy Ion Collisions:

Colliding Neutron Stars and Black Holes

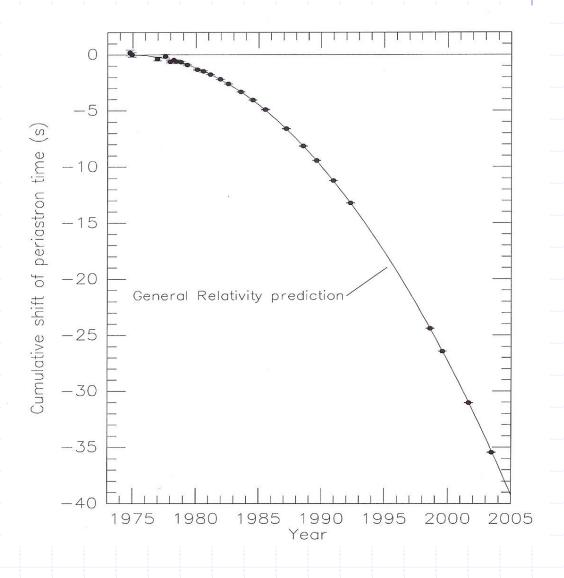
PUSAN

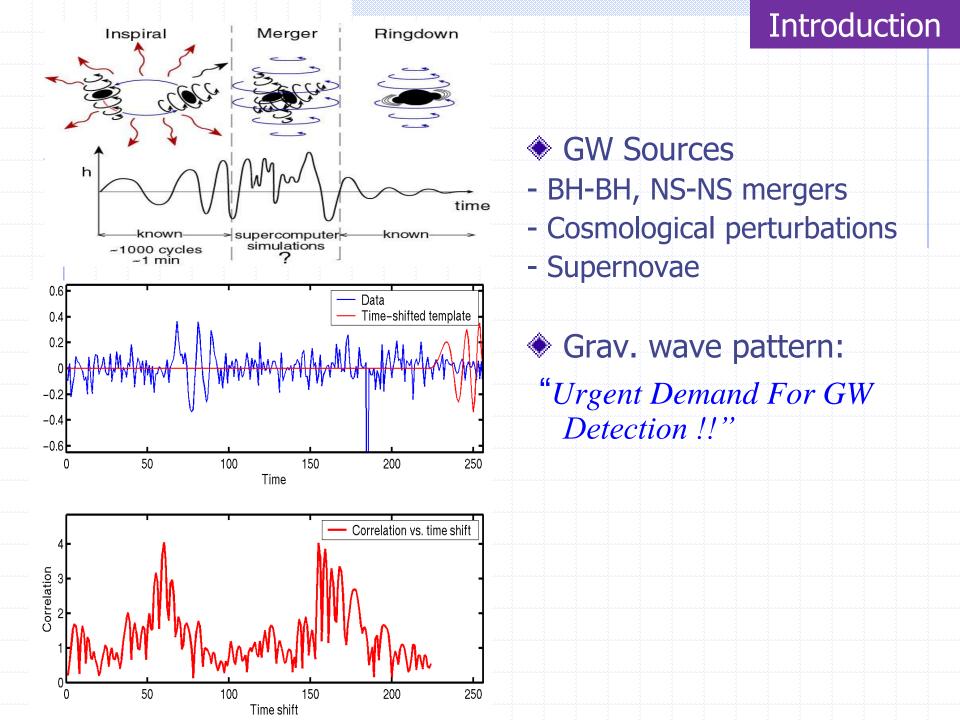

NATIONAL UNIVERSITY

EM wave

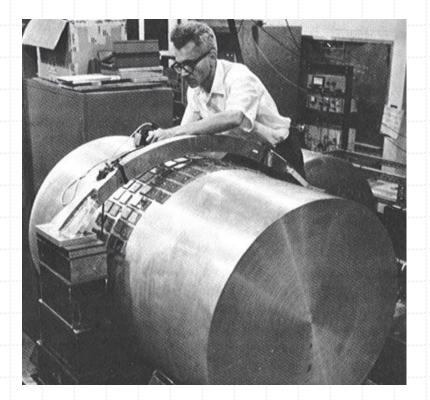
- Theory: Maxwell (1873)
- Acceleration of electric charge
- Detection : H. Hertz (1888)

Grav. wave

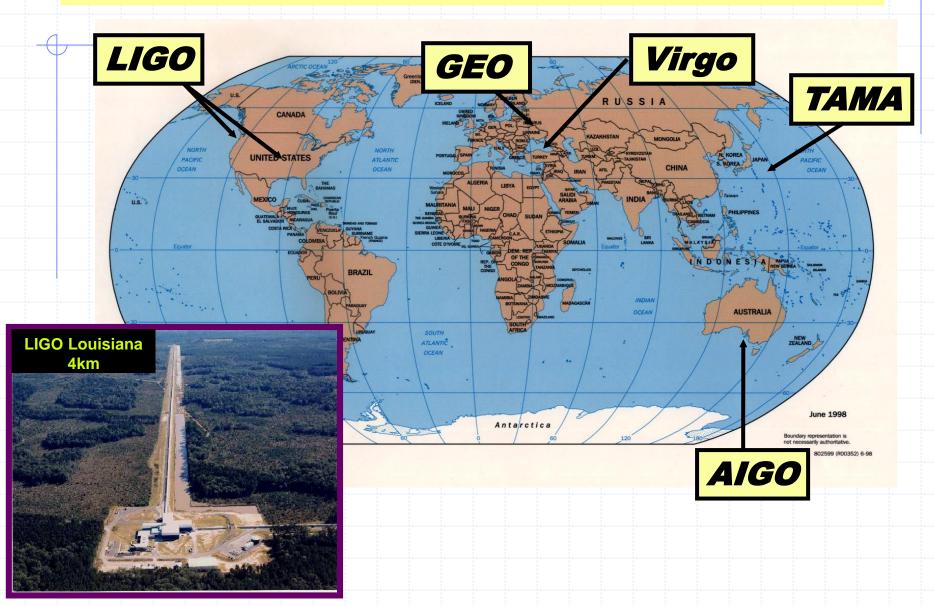

- Theory : Einstein (1916)
- Acceleration of matter
 (transverse & spin 2)
- Evidence : Taylor & Hulse ('79)
- Detection : K. Thorne(?) LIGO(?)


Gravitation Wave from Binary Neutron Star

B1913+16 Hulse & Taylor (1975)


Effect of Gravitational Wave Radiation 1993 Nobel Prize Hulse & Taylor

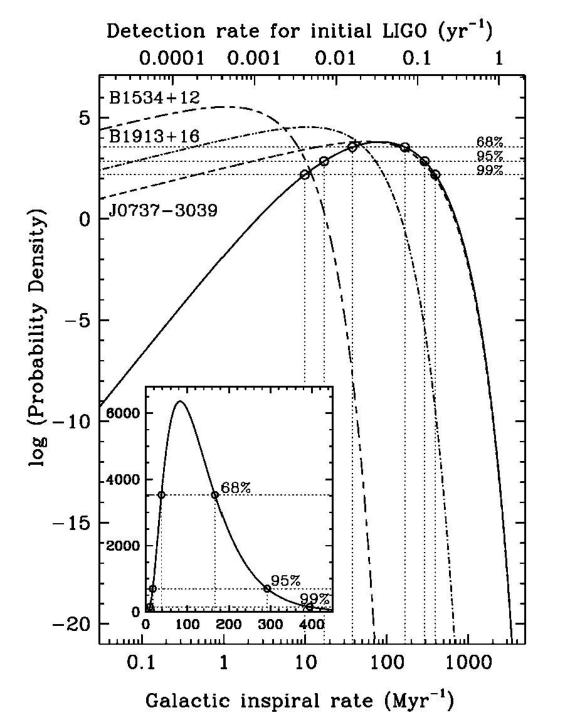
> LIGO was based on one DNS until 2002



NR and Gravitational Wave Detection

Joseph Weber (1960)

Network of Interferometers


NS-NS, NS-BH, BH-BH Binaries as sources for LIGO

(Laser Interferomer Gravitational Wave Observatory)

Observations

>NS (radio pulsar) which coalesce within Hubble time

							=
PSR	P (ms)	P_b (hr)	e	Total Mass M_{\odot}	$\tau_{\rm c}$ (Myr)	$ au_{ m GW}$ (Myr)	
	(1115)			<i>IVI</i>	(IVIYI)	(IVIYI)	
J0737-3039A	22.70	2.45	0.088	2.58	210	87	(2003)
J0737 - 3039B	2773	2.45	0.088	2.58	50	87	(2004)
B1534 + 12	37.90	10.10	0.274	2.75	248	2690	(1990)
J1756 - 2251	28.46	7.67	0.181	2.57	444	1690	/ (2004)
B1913+16	59.03	7.75	0.617	2.83	108	310	(1975)
B2127+11C	30.53	8.04	0.681	2.71	969	220/	(1990)
J1141 -6545^{\dagger}	393.90	4.74	0.172	2.30	1.4	590	(2000)
Not important							
Globular Cluster : no binary evolution							
White Dwarf companion							

Due to J0737-3039 LIGO detection rate was increased by 8 !

>weak radio signal: 1/6 of B1913+16 Short coalesce time: 1/2 of B1913+16 ➢Initial LIGO 0.035 event/year Advanced LIGO 187 event/year Kalogera et al. (2004)

Neutron Star - Neutron Star Binaries

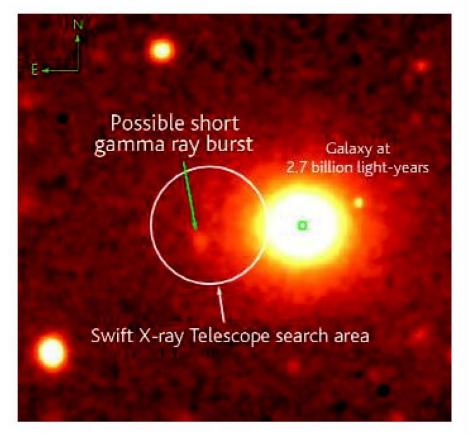
1518 + 49	$1.56\substack{+0.13\\-0.44}$	$1518 + 49 \text{ companion} \qquad 1.9$	$05_{-0.11}^{+0.45}$
1534 + 12	$1.3332^{+0.0010}_{-0.0010}$	1534+12 companion 1.	3452 + 0.0010
$1913 {+} 16$	$1.4408\substack{+0.0003\\-0.0003}$	$1913 + 16 \text{ companion} \qquad 1.$	$3873^{+0.0003}_{-0.0003}$
2127 + 11C	$1.349_{-0.040}^{+0.040}$	2127 + 11C companion 1.	$363_{-0.040}^{+0.040}$
J0737-3039A	$1.337\substack{+0.005\\-0.005}$	J0737-3039B 1.	$250^{+0.005}_{-0.005}$
J1756 - 2251	$1.40\substack{+0.02\\-0.03}$	J1756-2251 companion 1.	$18_{-0.02}^{+0.03}$

• All masses are < 1.5 M_{\odot}

• 1534, 2127: masses are within 1%

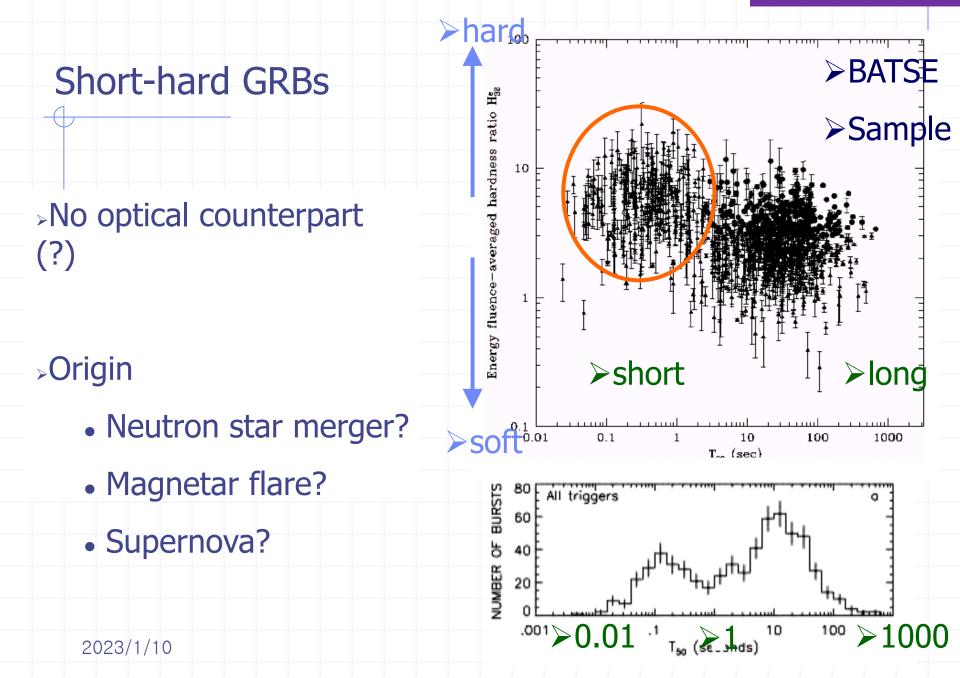
• J0737, J1756: ΔM = 0.1 - 0.2 M_☉

Predicted LIGO Detection Rates (yr^{-1}) .


Binary Type	Initial LIGO	Advanced LIGO	Chirp Masses (M_{\odot})		
$NS-NS^{\dagger}$	0.0348	187	1.0 - 1.3		
$\mathrm{BH} ext{-}\mathrm{NS}^{\dagger\dagger}$	0.696	3740	1.3 - 2.7		
BH-BH**	0.58	2450	~ 6		
Total	1.31	6377			
$R_{ m eff} = R_0 \left(rac{M_{ m chirp}}{M_\odot} ight)^{5/6} , M_{ m chirp} = \mu^{3/5} M_{ m tot}^{2/5}$					
≻R ₀ =	17 Mpc (initial	LIGO), 280 Mpc (a	dvanced LIGO)		

GAMMA RAY ASTRONOMY Signs Point to Neutron-Star Crash

Astronomers think they have witnessed their first colossal crash of two neutron stars, an event that has tantalized theorists for decades.


Shortly after midnight EDT on 9 May, a NASA satellite detected a sharp flare of energy, apparently from the fringes of a distant galaxy. The news from Swift, launched in November 2004, was quickly disseminated to ground-based astronomers, triggering hours of intense research. As *Science* went to press, exhausted observers verified that their early observations look a lot like a neutron-star merger. "Prudence would say that we need a strong confirmation, but we're very excited by it," says astronomer Joshua Bloom of the University of California, Berkeley.

Colliding neutron stars would help explain a puzzling variety of the titanic explosions called gamma ray bursts (GRBs) Astronomers are

Neutron-star cataclysm? A faint patch of light (green arrow) may mark the spot where two neutron stars collided.

Science 308 (2005) 939

- NS-NS binaries : several
- NS-BH binaries : some clues
- BH-BH binaries : expected in globular clusters where old-dead stars (NS, BH) are populated.

Wanted

- How to distinguish sources from GW observations?
- > What is the GW pattern ?

Why numerical approach ?

- Perturbative analytic method: good during the early stages of a merger & later stages of ringdown.
- Numerical solution is essential: during last several orbits, plunge, early stages of ring down.

Problem:

no code to simulate a nonaxisymmetric collisions through coalescence & ringdown

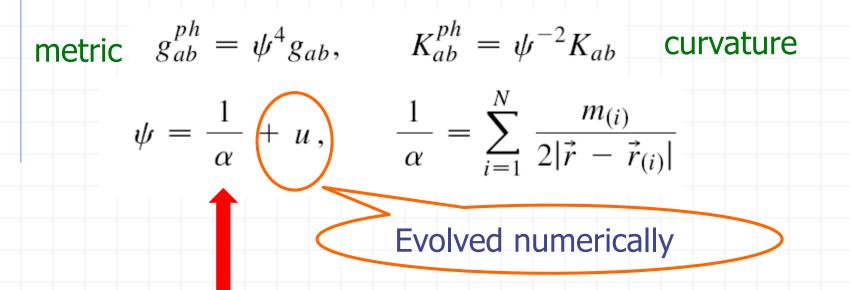
A bit of history : Simulations

- Head-on collision of two equal mass black holes: early 70's DeWitt ('76), Cadez ('71), Smarr ('75, '76, '77, '79), Eppley ('71), Anninos et al. ('95)
- 3-dim grazing collision of two BHs (2001) Alcubierre, Benger, Brugmann, Lanfermann, Nerger, Seidel, and Takahashi
- Single relativistic star (2002) Font, Gooddale, Iyer, Miller, Rezzolla, Seidel et al.
- Binary black hole coalescences (2005) Pretorius (0507), Campanelli (0511), Baker, Centrella, Dae-Il Choi, Koppitz, van Meter (0511), Diener et al. (0512)

Current Status of Numerical Approaches

PRL 96, 111101 (2006)

Evolution of Binary Black-Hole Spacetimes F. Pretorius, PRL 95, 121101 (2005)


Best (?) work until 2005

2005

Traditional treatment

Initial data by punctures (Brill-Lindquist conformal factor ψ_{BL})

Brandt & Brugmann, PRL 78, 3606 (1997)

> Traditionally " $\psi_{\rm BL} = 1/\alpha$ " is factored out & handled analytically

> Puncture remain fixed on the grid (during evolution)

- Problem in traditional treatment
 - As the distance between BHs shrinks, certain component of the metric must approach zero => causing other quantity diverge => kill the run before common horizon forms
 - 2. Corotating coordinate frame causes superluminal coordinate speed at large distances

this paper: generalized harmonic coordinates Capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves \succ e.g., evolution of binary: 2 equal mass, nonspinning BHs, → single plunge orbit, merger, ringdown → Kerr BH (a=0.7) → 5% of initial rest mass radiated as GW

Features of generalized harmonic coordinates (I)

- discretized scheme → minimize constraint eq (Evolved quantities → covariant metric elements, harmonic source, matter functions)
- Compactified coordinate → boundaries at spatial infinity (correct boundary)
- 3. Adaptive mesh refinement \rightarrow relevant length scale
- Dynamical excision → track the motion of BH through grid (using harmonic gauge)
- Addition of numerical dissipation → control highfrequency instabilities

Features of generalized harmonic coordinates (II)

- Time slicing → slows down the collapse of the lapse
- Addition of "constraint-damping" → very important effect on how long a simulation with black holes can run with reasonable accuracy.

 $g^{\delta\gamma}g_{\alpha\beta,\gamma\delta} + g^{\gamma\delta}_{,\beta}g_{\alpha\delta,\gamma} + g^{\gamma\delta}_{,\alpha}g_{\beta\delta,\gamma} + 2H_{(\alpha,\beta)} - 2H_{\delta}\Gamma^{\delta}_{\alpha\beta} + 2\Gamma^{\gamma}_{\delta\beta}\Gamma^{\delta}_{\gamma\alpha}$

$$= -8\pi(2T_{\alpha\beta} - g_{\alpha\beta}T) - \kappa(n_{\alpha}C_{\beta} + n_{\beta}C_{\alpha} - g_{\alpha\beta}n^{\gamma}C_{\gamma})$$

2005

- H: source function (gauge freedom)
- T: matter stress tensor
- N: unit hypersurface normal vector
- Γ : Christoffel symbols

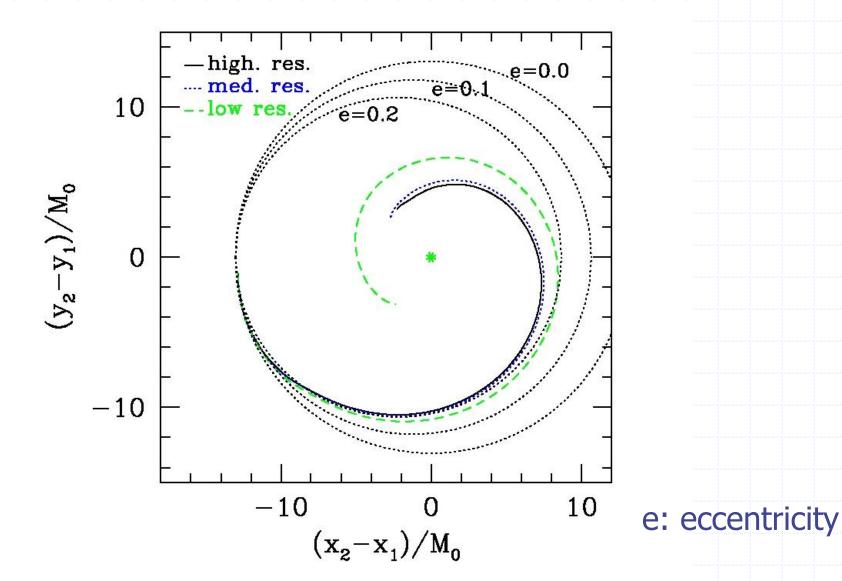
Constraint

$$C_{\mu} \equiv H_{\mu} - g_{\mu\nu} \Box x^{\nu}.$$

Evolution of source function

$$\Box H_{t} = -\xi_{1} \frac{\alpha - 1}{\alpha^{\eta}} + \xi_{2} H_{t,\nu} n^{\nu}, \qquad H_{i} = 0,$$

Initial conditions


- Initial data: scalar field gravitational collapse (at t=0: two Lorentz boosted scalar field profiles)
- initial spatial metric & its first time derivative: conformally flat
- Maximal condition
- Harmonic condition: H=0

Three different grid hierarchies: for efficiency

- Low resolution: 32^3 with up to 7 additional levels of 2:1 refinement
- Medium resolution: one additional refinement during the inspiral and early phases of the merger
- High resolution: upto 10 levels of refinement during the inspiral and early ringdown phase.

2005

Initial parameter are chosen such that the BH would merge within roughly one orbit.

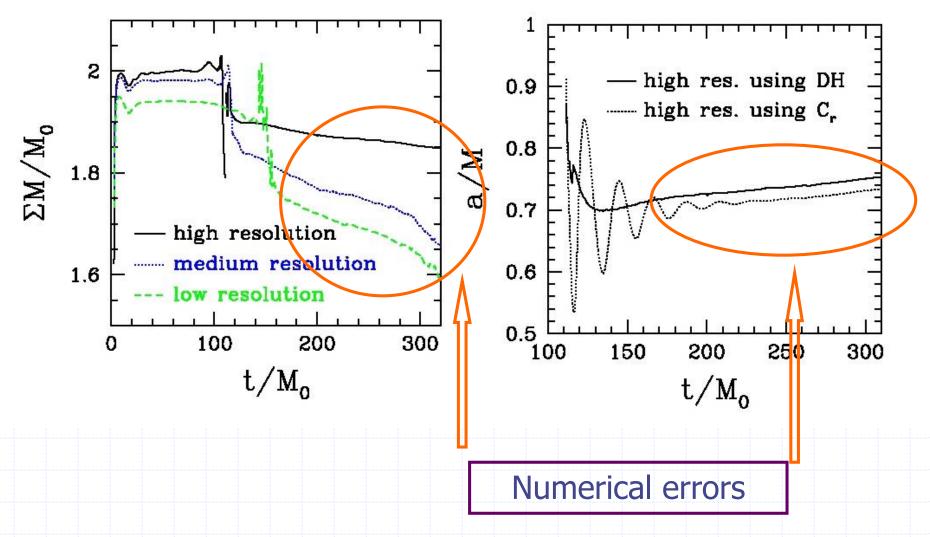
2005

	ADM Mass	Low Res. 2.36 <i>M</i> ₀	Med. Res. $2.39M_0$	High Res. $2.39M_0$
Initial	BH masses	$0.97M_0$	$0.99M_0$	M_0
	Orbital eccentricity	0-0.2	0-0.2	0-0.2
	Proper separation	16.5 M_0	16.6 M_0	16.6 M_0
	Angular velocity $\times M_0$	0.023	0.023	0.023
Final	BH mass	1.77 <i>M</i> ₀	1.85 <i>M</i> ₀	1.90 <i>M</i> ₀
	BH spin parameter	0.74	0.74	0.74

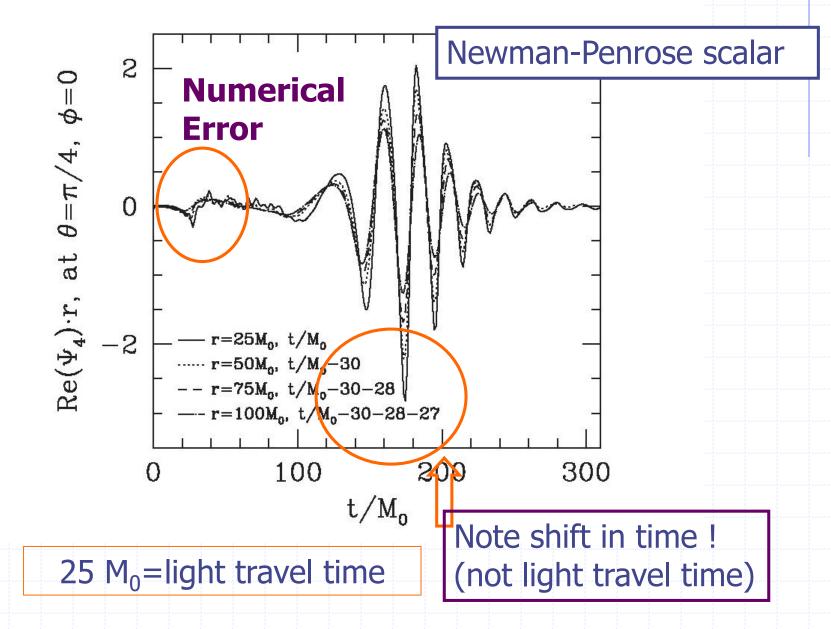
ADM Mass: Arnowitt-Deser-Misner mass (total energy of binary system)

15% of total scalar field energy leaves the orbit in light crossing time of the orbit.

BH Mass : Smarr formula (A: horizon area)


$$M = \sqrt{M_{ir}^2 + J^2/(4M_{ir}^2)}, \qquad M_{ir} \equiv \sqrt{A/16\pi}.$$

Kerr parameter (ratio of the polar to equatorial proper radius of the horizon)


$$a \approx \sqrt{1 - (2.55C_r - 1.55)^2}.$$

2005

Two methods to determine "a" → agree in average "Dynamical horizon framework" (rotation axis is orthogonal to BH) & using "Cr"

Emitted gravitational wave (medium resolution)

2005

Total energy emitted

$$\frac{dE}{dt} = \frac{R^2}{4\pi} \int p d\Omega, \qquad p = \int_0^t \Psi_4 dt \int_0^t \bar{\Psi}_4 dt,$$

 \succ Numerical error in Ψ will inflate !

To reduce error: filter high spherical harmonics (> l=6)

➢Radiated GW energy

- From summation from Ψ:
 4.7% (r=25), 3.2% (r=50),
 2.7% (r=75), 2.3% (r=100)
- ➢ From final & initial horizon mass difference
 → 5% (high resolution), 11% (low resolution)

works to be done (as of 2005)

- Inprovement of the accuracy (in particupar the gravitational wave)
- explore large classes of initial conditions (separation, initial mass, initial BH spin, ...)
- Extract more geometric informations about the nature of the merger event from the simulation.

New Achievement in 2006

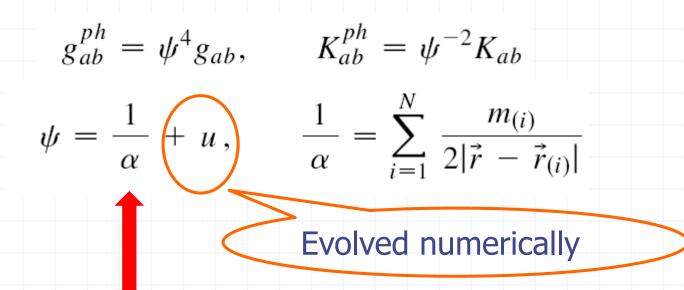
2006

Baker, Centrella, D.-I. Choi, Koppits, van Meter, PRL 96, 111102 (2006)

Campanelli, Lousto, Marronetti, Zlochower, PRL 96, 111101 (2006)

New features in these two works

Moving black holes through grid without excision


Work by D.-I. Choi group

Evolution by HAHNDOL code

Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes

Baker, Centrella, Choi, Koppitz, van Meter PRL 96, 111102 (2006) Initial data by punctures (Brill-Lindquist conformal factor ψ_{BL})

Brandt & Brugmann, PRL 78, 3606 (1997)

> Traditionally " $\psi_{\rm BL} = 1/\alpha$ " is factored out & handled analytically

> Puncture remain fixed on the grid (during evolution)

- Problem in traditional treatment
 - As the distance between BHs shrinks, certain component of the metric must approach zero => causing other quantity diverge => kill the run before common horizon forms
 - 2. Corotating coordinate frame causes superluminal coordinate speed at large distances

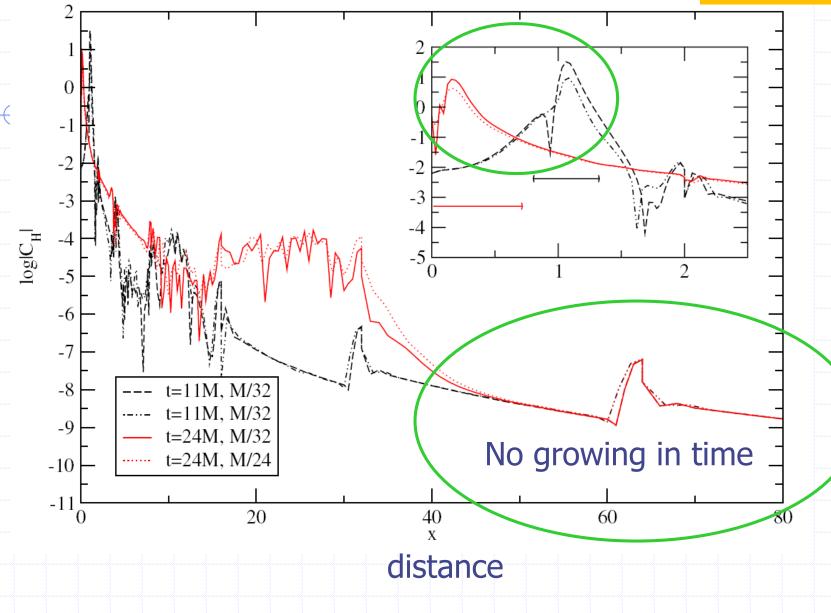
New approach

Evolve full conformal factor ψ

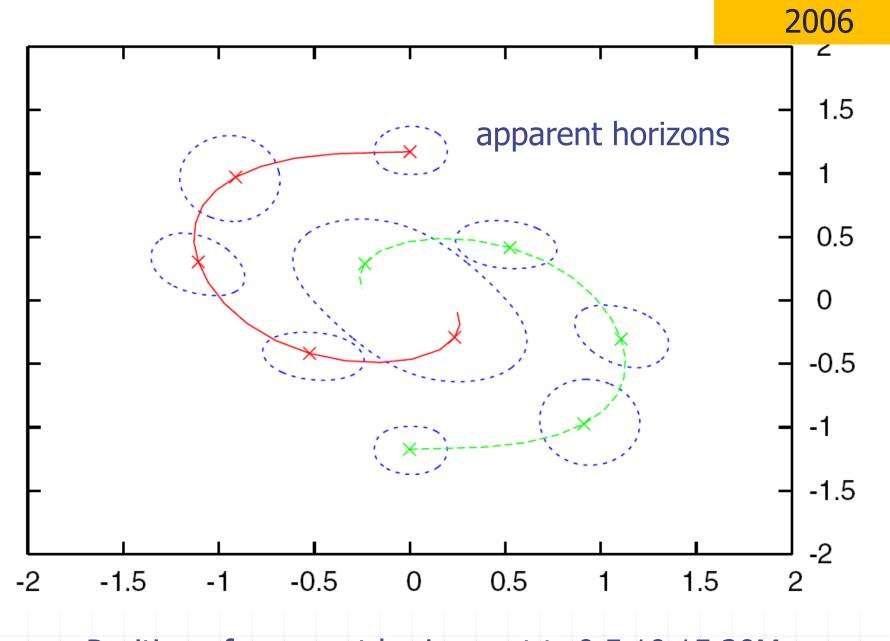
- Initial setup: centers of BHs are not at the grid points
- Initially, effectively regularize the puncture singularity by taking numerical derivatives of conformal factor
- During evolution: BHs remain in the z=0 plane
- > grids points in cell-centered implementation.

HANDOL code : cell-centered implementation

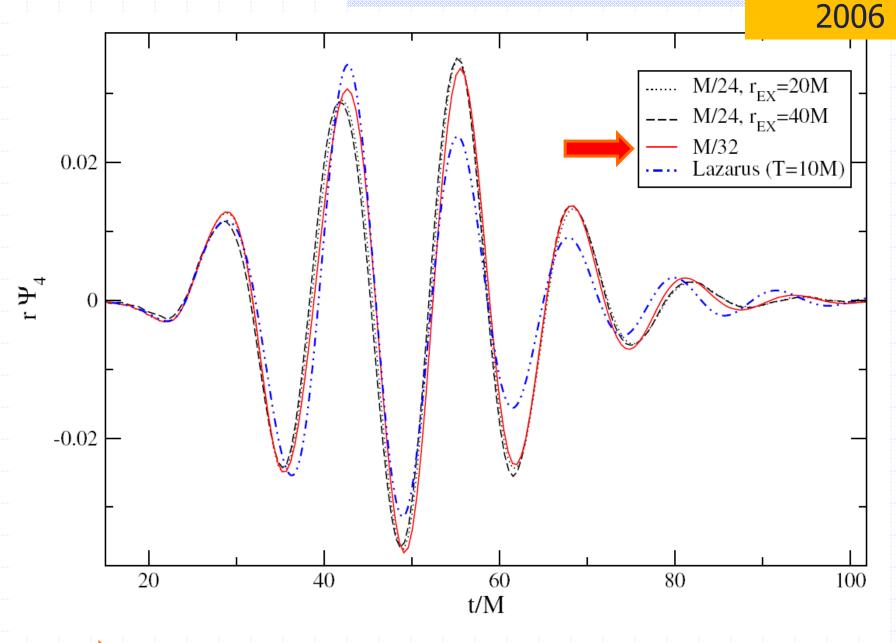
- Innermost refinement region is a cube stretching from -2M to 2M in all 3-direction
- \succ Punctures are placed in the z=0 plane
- Impose equatorial symmetry
- Resolution M/16, M/24, M/32
- Outer boundary 128M
- ➢ 4th-order finite differentiating
- Highest resolution: 40 hours on 256 processors of SGI Altix 3000 machine

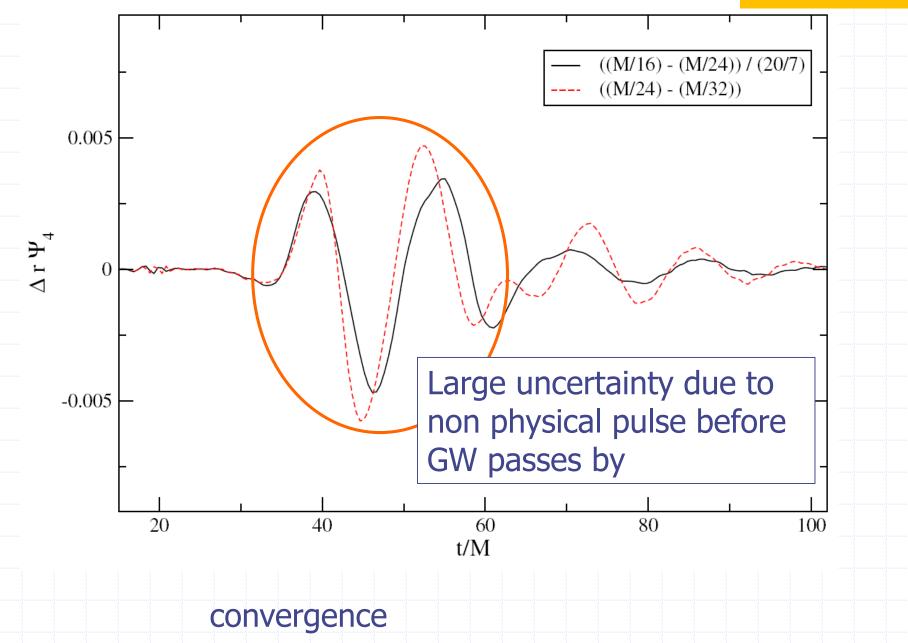

Free evolution of punctures

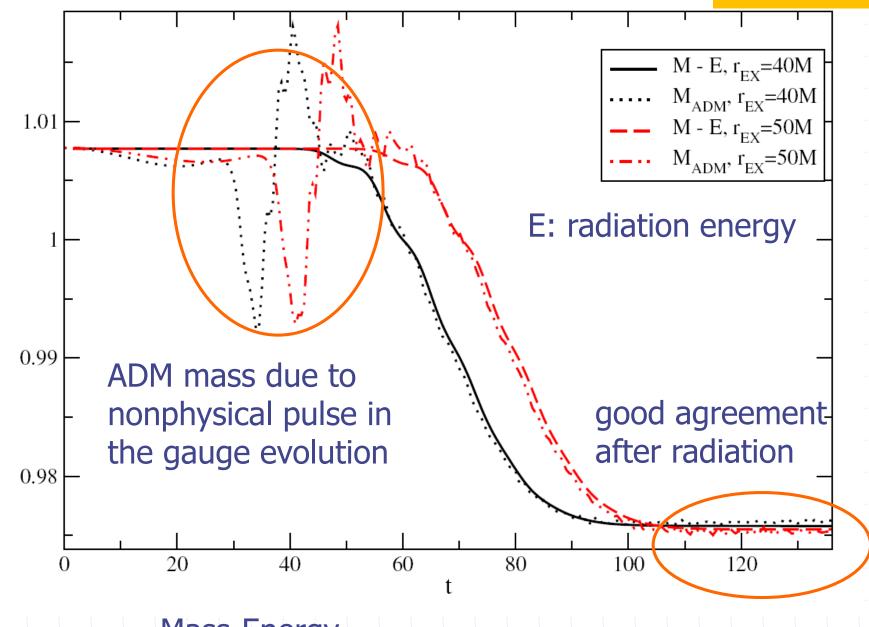
Possible by Gamma-freezing shift vector which drives coordinates towards quiescence as the merged remnant BHs also becomes physically quiescent.


$$\begin{aligned} \partial_t \beta^i &= \frac{3}{4} \alpha B^i \\ \partial_t B^i &= \partial_t \tilde{\Gamma}^i - \beta^j \partial_j \tilde{\Gamma}^i - \eta B^i \end{aligned}$$

Eliminate zero-speed mode (to destroy "puncture memory" effect)

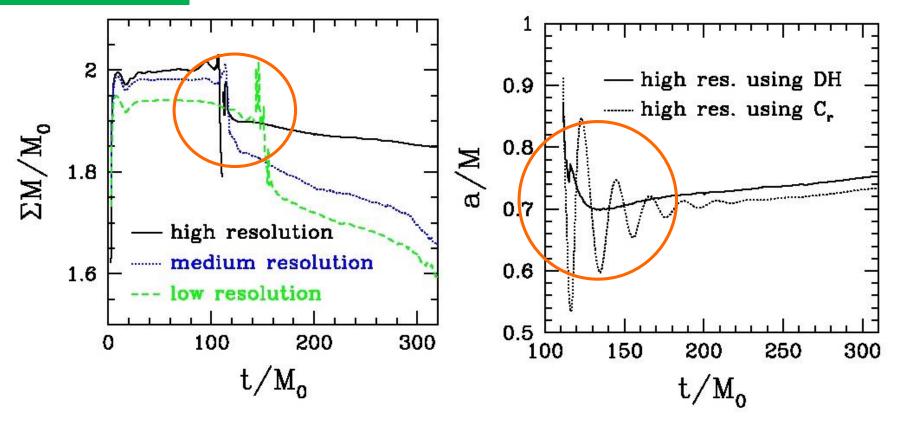

2006


>Hamiltonial constraint error at two times



Position of apparent horizons at t=0,5,10,15,20M

For M/32 resolution, no difference at r=20, 40M !



Mass-Energy

For comparison

2005

Pretorius's results

C.-H. Choi's code (2006) gives better results (later t ?)

Conclusion

	<i>M</i> /16	M/24	<i>M</i> /32	Lazarus	AEI
E/M	0.0516	0.0342	0.0330	0.025	0.030
J/M^2	0.208	0.140	0.138	0.10	0.17

Radiated energy (E) & angular momentum (J) by gravitional wave

> 3% of initial mass-energy is in gravitational wave

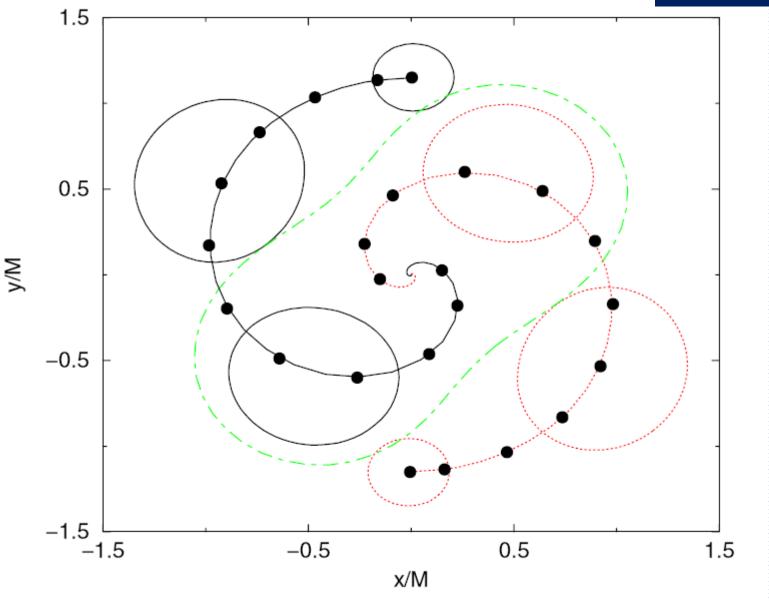
Good energy conservation during the evolution

Future work: adaptive mesh refinement implementation

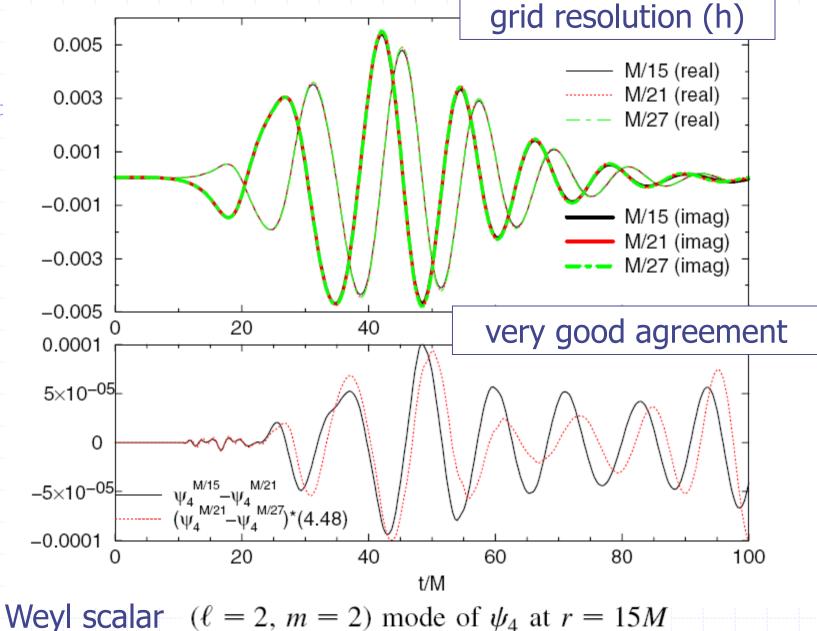
Accurate Evolutions of Orbiting Black-Hole Binaries without Excision

Campanelli, Lousto, Marronetti, Zlochower

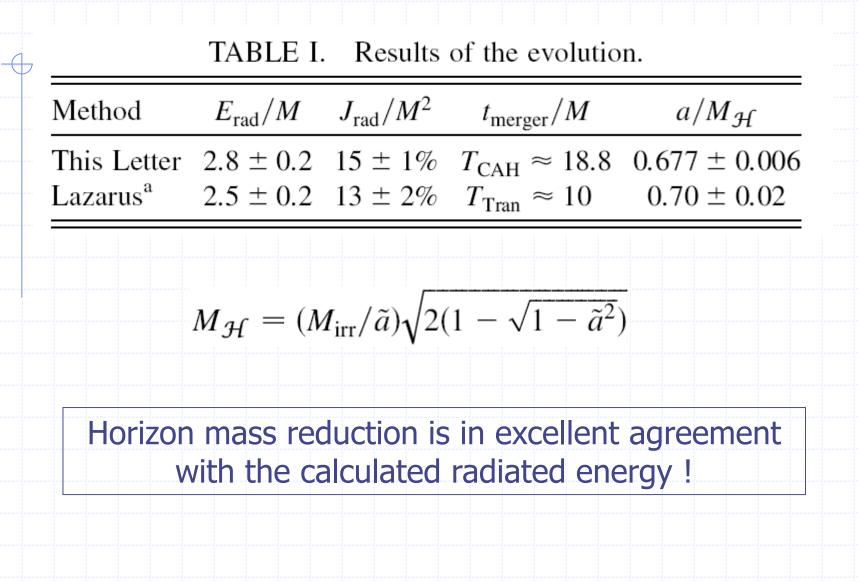
PRL96, 111101 (2006)


Gauge condition

$$\partial_0 \alpha = -2\alpha K$$


$$\partial_t \beta^a = B^a, \qquad \partial_t B^a = 3/4 \partial_t \tilde{\Gamma}^a - \eta B^a.$$

Cf) Dr. Choi's group


$$\partial_t \beta^i = \frac{3}{4} \alpha B^i$$
$$\partial_t B^i = \partial_t \tilde{\Gamma}^i - \beta^j \partial_j \tilde{\Gamma}^i - \eta B^i$$

trajectories from t=0 to 18.8 M (in 2.5 M step)

Computing time

- Largest run (h=M/27)
- > 2882 X 576 grid points (64 GB)
- 2 weeks on 16 nodes (dual 3.2 GHz Xeon processors)

Dr. Choi's group

2006

- Highest resolution: 40 hours on 256 processors of SGI Altix 3000 machine
- Twice computing time per processor

Future plan

- Larger initial separations (several orbits before merging)
- Thin-sandwidth & post-Newtonian initial data set
- Unequal-mass black-holes & their gravitational kick
- Highly spinning black-holes

Prospects

- Two recent works <u>without excision</u> give more stable (reliable) results !!
- Future possibilities in numerical relativity !
- Colliding Neutron Stars:
 - Equation of States

O

- QGP formation in the process of collision (?)

Physics of Heavy Ion
 Collisions

Prospects

NR Group vs HIM (since 2004)

- ✓ 2004: Gravitational Wave Working Group
- ✓ 2005.3.16: Kick-off meeting
- ✓ 2005.6.28: Korean
 Numerical Relativity
 Group
- Monthly mini-workshops and Schools
- ✓ KISTI (Super Computing Center)
- ✓ APCTP Topical Research Program

- ✓ 2004.12 first HIM meeting
- Bimonthly meeting
- ✓ 1st ATHIC (2006.06)
- ✓ 2nd ATHIC (2008.10)
- ✓ 2005-2007: APCTP Topical Research Program