Electron-hadron separation by Neural-network

Yonsei university

- 1. L3 MAGNET 2. HMPID TOF 3. 4. DIPOLE MAGNE 5. MUON FILTER 6. TRACKING CHAI 6. TRIGGER CHAM 7. ABSORBER 8• TPC 9• PHOS 10• ITS

TRD(Transition Radiation Detector)

- |η|<0.9, 45°<θ<135°
- 18 supermodules in Φ sector
- 6 Radial layers
- 5 z-longitudinal stack
 - → total 540 chambers
 - \rightarrow 750m² active area
 - \rightarrow 28m³ of gas
- In total 1.18 million read-out channels

FROM C. Adler -- Hadron Collider Physics, Les Diablerets, 4-9 July 2005

TRD(Transition Radiation Detector) (What is transition radiation?)

"Transition radiation is emitted whenever a charged particle crosses an interface between two media with different dielectric functions."

- L.Durand, Phys. Rev. D 11, 89(1975)

1 Event signals of Electron and Pion

FROM P. Shukla -- ICPA-QGP'05, Kolkata, 8-12 February 2005

e/π -Separation

Likelihood to be electrons

$$L = \frac{P_e}{P_e + P_\pi}$$

$$P_e = \prod_{i=1}^{N} P(X_i | e)$$
$$P_{\pi} = \prod_{i=1}^{N} P(X_i | \pi),$$

e/π-Separation-Classical Methods

Distributions of the likelihood for electrons and pions of 2GeV/c, obtained from the total energy deposit.

Pion efficiency as a function of electron efficiency for a 6 layer likelihood on total energy, for momentum of 2GeV/c. The values corresponding to measured data are compared simulations.

e/π-Separation-Classical Methods

Pion efficiency as a function of number of layers for a momentum of 2GeV/c

Other method?

Neural-network

- A simple Modeling of the biological neuron system
- Being used in various fields for data analysis and classification
- Examples : Image analysis
 - Financial movement's prediction Sales forecast In particle physics

Modeling of neuron

NN-Example

NN-Example

Training sample ($x_1=1$, $x_2=2$, $x_3=3$, y=1)

Il But we want the output to be 1 Change the W vector by some rules

e/π-Separation-Neural network

Comparison of methods

Summary

 The suppression factor was improved by about a factor of 3 by Neural net when compared with classical method.

- Need to be done
 - Application to the full simulation sample
 - Refined Neural Network

Other NN structures must be considered

Modeling of Neuron

Ionization energy loss

lonization energy loss for muons and pions and protons on a variety of materials.

Bethe-Bloch formula

$$-\frac{dE}{dx} = \frac{Dq^2n_e}{\beta^2} \left[\ln(\frac{2m_ec^2\beta^2\gamma^2}{I}) - \beta^2\right]$$
$$D = 5.1 \times 10^{-25} MeV cm^2$$

Ionization energy loss

Momentum dependence of the most probable and the average values of the energy loss for pions and electrons. The symbols are measurements, the lines are calculations

Signals of Electron and Pion

pulse height

Mean signal of Electron and Pion

