What I have learned at RHIC

Yasuo MIAKE Univ. of Tsukuba

Yasuo MIAKE Univ. of Tsukuba

Text book for graduate students

CAMBRIDGE (

Catalogue

Home > Catalogue > Quark-Gluon Plasma

Quark-Gluon Plasma

Series: Cambridge Monographs on Particle Physics, Nucle

Kohsuke Yagi Urawa University, Japan

Tetsuo Hatsuda University of Tokyo

Yasuo Miake University of Tsukuba, Japan

Hardback (ISBN-10: 0521561086 | ISBN-13: 97805215610

For price and ordering options, inspection copy requests, and rea UK, Europe, Middle East and Africa | Americas | Australia and Ne

Quark Gluon Plasma

Is it QGP inside a proton?

 ✓ Asymptotic freedom means a QGP inside a proton?

Free moving quarks & gluons for a large volume
 Applicability of Statistical

Physics is essential!

$\epsilon_{\text{OGP}} \sim 2 \, [\text{GeV/fm}^3] \leftarrow$ —— Ex. Lattice QCD $< n_{q,\bar{q}} > \sim \frac{\epsilon_{\rm QGP}}{< m_T >} \sim \frac{2 {\rm GeV}}{0.4 {\rm GeV}} \sim 5$ $\lambda_q = \frac{1}{n\sigma_{qq}}$ $\sim \frac{1}{5 \times 0.4} = 0.5 \text{ [fm]}$ $\lambda_q \ll R_{\rm system}$ $\therefore \sigma_{qq} \sim \frac{\sigma_{NN}}{3 \times 3} \sim \frac{4[\text{fm}^2]}{9} \sim 0.4$

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Statistical physics at quark level

What we expect:

Hydrodynamical behavior at quark level

Liqui

 Chemical equilibrium from particle yield ratio
 Kinematical equilibrium from transverse distr.

Chemical Eq. from particle yield ratios

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2}dp}{e^{(E_{i} - \mu_{i})/T} \pm 1}$$

\checkmark Only two parameters fit every ratio very well !

KPS-HIM @Jeju, 2007

to central collisions

KPS-HIM @Jeju, 2007

Transverse mass distr.

Blast Wave Model

Freeze-out Conditions

Kinematical & Chemical

freeze-out show difference in

centrality dependence!

Kinematical :

➡Tch^{cent.} < Tch^{per.} < Tch

Freeze-out with $\lambda \sim R$

Chemical :

➡T_{ch}^{cent.} ~ T_{ch}^{per.} ~ 170 MeV

Freeze-out with $\varepsilon \sim \varepsilon_{\rm crit}$

- ✓Nature of Freeze-out
 - Kinematical freeze-out is collisional, while chemical is not.

Adiabatic Expansion Model

Assumptions;

- Perfect fluid/Ideal gas
- Entropy conservation
- **\bulletBjorken Formula for \varepsilon**
- Transverse &
 - longitudinal expansion
- ✓ Central collisions
 freeze-out later than

1+1D Adiabatic Expansion

Freeze-out Time & Temperature

- More central collisions freeze out later at lower temperature.
- Consistent with freeze-out condition:
 λ(t)=R(t)
- Even if quark phase is created before hadronization, hadronic scattering should be taken into account.
- As expected, <u>T_{fo}</u> is lower than <u>T_{ch}</u>.
 Different centrality dependence.
- T_{fo} dropping is consistent with 1+1D adiabatic expansion.
- T_c ~ T_{ch} => the observed chemical eq. not via hadronic scatterings.

Large Elliptic Flow Jet Modification

 \checkmark In non-central collisions, participant region has almond shape.

azimuthal anisotropy in coordinate space

 \checkmark If λ KR, azimuthal anisotropy of the coordinate space is converted to that of the momentum space.

 \Rightarrow v₂; second Fourier harmonics of azimuthal distribution

 \checkmark Goodies :

Clear origin of the signal

 $N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) \}$

Collision geometry can be determined experimentally

Phenix; PRL 89(2002)212301

Phobos; nucl-ex/0610037

Eccentricity is evaluated from centrality of collisions

Ratio stays ~constant

Eccentricity scaling observed in comparison of Au+Au, Cu+Cu

► Scaling with eccentricity shows v₂ builds up at early stage KPS-HIM @Jeju, 2007

Large azimuthal anisotropy

-2

 $\eta = \eta - y_{beam}$

ſ

-10

KPS-HIM @Jeju, 2007

-8

-6

$$N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) \}$$

Collective Flow

PHENIX : P.R.L. 91, 182301 (2003)

✓Mass Ordering of v₂ at low p_t region:

Existence of collective flow

Good agreement with hydrodynamics of perfect fluid

- Early thermalization (~0.6 fm/c)
- High energy density (~20 GeV/fm³)
- Low viscosity

✓ Departure at high pt region (> 1.5 GeV/c);

Other mechanism?

SCIENTIFIC AMERICAN

MAY 2006 WWW.SCIAM.COM

Quark Soup

PHYSICISTS RE-CREATE THE LIQUID STUFF OF THE EARLIEST UNIVERSE

/ In central col., p/ π ratio is very large, while in peripheral, p/ π ratio similar to those in ee/pp suggesting fragmentaton process.

Fragmentation process should show $n_p < n_{\pi}$ as seen in ee/pp.

 While mass ordering of v2 seen at low pt region, clear departure observed.
 Suggesting other production mechanism.
 KPS-HIM @Jeju, 2007
 Quark Recombination Model (Quark Coalescence Model)

Quark recombination model (RECO)

Quarks, anti-quarks combine to form mesons and baryons from universal quark distribution, w(pt). Hadron Mom. distr. of meson (2q); $W_{\rm M}(p_t) \approx C_{\rm M} \cdot w^2 (\frac{p_t}{2})$ Mom. distr. of baryon (3q); $W_{\rm B}(p_t) \approx C_B \cdot w^3 (\frac{p_t}{2})$ w(pt); Universal mom. distr. of quarks {steep in pt} QGP Dr (GeV/c Characteristic scaling features expected. Because of the steep distr. of w(pt), RECO

 \rightarrow Quark number scaling

wins at high pt even w. small Cx. KHo-miwi @Jeju, 2007

V₂ from RECO

M. Issah, A. Taranenko, nucl-ex/0604011

 ✓ Mesons and baryons made of light quarks seem to be consistent with the recombination model and there seem to be universal quark distribution, w(pt,Φ).

Somewhat weird feeling of KET scaling

Where or what is the role of gluons in Reco? Universal behavior with kinetic energy of effective mass of quarks ?

- Quarks wear the gluons first, knowing which hadron they will be.(Effective mass)
- Then, coalesced and boosted by the pressure behind.

- ✓ Charm decay produces high energy electrons.
- ✓ v₂ of single electrons are measured.
- Observed data favors flow of charm, suggesting thermalization of heavy quarks.
- This supports quarkcoalescence & formation of QGP.
- \checkmark Best to measure v₂ of J/ ψ

Extended Blast-wave model

$$E\frac{d^{3}N}{dp^{3}} = \int_{\Sigma_{f}} f(x,p)p^{\mu}d\Sigma_{\mu}$$
$$f(x,p) = \frac{1}{(2\pi)^{3}} \frac{1}{e^{[(p_{\mu}u^{\mu}(x) - \mu(x))/T(x)]} \mp 1}$$

$$v_{2} = \frac{\int_{0}^{R} r dr \int_{0}^{2\pi} d\phi \, \cos\left(2\phi\right) I_{2}(\alpha) K_{1}(\beta)}{\int_{0}^{R} r dr \int_{0}^{2\pi} d\phi \, I_{0}(\alpha) K_{1}(\beta)}$$
$$\alpha = \left(\frac{p_{T}}{T}\right) \sinh\rho, \quad \beta = \left(\frac{m_{T}}{T}\right) \cosh\rho$$
$$\beta_{T}(r) = \tanh\rho$$

- Extend standard Blast-wave parameterization in order to fit v₂(p_T) in non-central collisions
- Assumptions
 - Use density distributions from initial geometry overlap instead of uniform density

31

- Velocity profile
 - Use Density gradient distributions
- Eccentricity (ε) is fixed by initial overlap density
- Velocity anisotropy (β₂) is fixed by the velocity profile
- 2 free parameters
 - Temperature: T
 - Magnitude of transverse boost velocity: β_T

H. Masui, Thesis, Tsukuba, 2007

- Calculate N_{part}(x, y) and N_{coll}(x, y) from Woods-saxon density profile
 - − Direction of density gradient ⇒ direction of boost
 - Length = magnitude of boost

H. Masui, Thesis, Tsukuba, 2007

KPS-HIM @Jeju, 2007

Results

- Radial velocity and T from spectra are not changed with $\langle \epsilon \rangle$
- Temperature from v₂ fit strongly decrease with (ε)
 χ²/NDF < 1 up to ε ~ 0.05 with systematic error
- T(v₂) ~ T_{ch} (150 MeV) > T(spectra) at the eccentricity extracted by HBT analysis ⇒ early freeze-out of v₂ ?

36

What is Jet ?

✓ At ISR in 1972, deviation from the mt scaling at high pt region is observed as a first time.

Sinary parton scattering followed by fragmentation produces back-to-back jet.

 \checkmark Main source of high pt particles.

Comparison of Au+Au and pp

✓ For comparison, Au +Au & pp spectra scaled by N_{binary}. In peripheral collisions, Au+Au ~ pp $\sqrt{\ln \text{central collisions}}$ Au+Au < pp Suppression of yield? Loss of p_T ? **Jet Quench?**

Suppression of high pt particles

Nuclear Modification Factor $R_{Au+Au} = \frac{dn_{Au+Au}/dp_T dy}{\langle N_{binary} \rangle \cdot dn_{pp}/dp_T dy}$

KPS-HIM @Jeju, 2007

AutAu vs dtAu

✓ High pt suppression in Au+Au, while not observed in d+Au.

Effect is not due to initial state, but final state.

 \checkmark From broad/none to distinct two shoulders at $\Delta \Phi = \pi \pm 1.1$ with decreasing momentum.

Shoulders at $\Delta \Phi = \pi \pm 1.1$

Location & <pt> of shoulder seem to be independent of centrality and pt.

Not cherenkov, not deflection, but, Shock wave !?

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

KPS-HIM @Jeju, 2007

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

KPS-HIM @Jeju, 2007

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

39

pp

dAu

KPS-HIM @Jeju, 2007

pp

dAu

39

pp

dAu

STAR@QM06, nucl-ex/703010 AuAu(cent)

KPS-HIM @Jeju, 2007

Difficulty of the analysis

 \checkmark Large azimuthal anisotropy is the major background.

- "Discovery of yesterday is background of today and calibration of tomorrow"
- More precise determination of the elliptic flow is important

Both group say it is consistent with Mach Cone.

KPS-HIM @Jeju, 2007

 ✓ If confirmed, it is breakthrough from the era of QGP discovery to the study of property, such as sound velocity in the plasma

V.S. Pantuev, arXiv:hep-ph/0701.1882v1

STAR, arXiv:nucl-ex/0701074

- Stopped parton is the source of ridge as well as Mach cone.
- This happens only at the surface
- There should be velocity boost at the ridge region (pi,K,p)
- v3 components independent of R.P.

√We have seen partonic matter, ie, a QGP!

Successful description of the system in terms of statistical thermo-dynamics;

 \blacklozenge Particle ratios in Tch, μ , Kinematical distr. in Tth and β

✓Partonic

- Large azimuthal anisotropy cannot be created with hadronic process.
- High pt suppression and disappearance of back-to-back is at parton level.

Successful description of quark recombination;

Phenomenological, but universal quark distribution function!

 \checkmark We are in the state of studying property of plasma, like c_s .