Dynamical Modeling of Relativistic Heavy Ion Collisions

Tetsufumi Hirano

Physics THE UNIVERSITY OF TOKYO hirano_at_phys.s.u-tokyo.ac.jp http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano

Collaborators: M.Gyulassy, Y.Nara, U.Heinz, D.Kharzeev, R.Lacey, T.Gunji, H.Hamagaki, T.Hatsuda, M.Isse, A.Ohnishi, K.Yoshino, R.Mizukawa, N.Akamatsu **Oct.19-20, 2007**

Cutline

- ⚫Introduction
- ⚫Dynamical modeling of heavy ion collisions
- Bulk
- ⚫Hard/rare probes and interplay btw. soft and hard
- ⚫Summary and Outlook

Phase Diagram of QCD

Understanding of phase diagram and EOS is one of the main topics in modern nuclear physics.

Taken from http://theory.gsi.de/~friman/trento_06.html

TOV eq. plays an important role in understanding of EOS

Phase Diagram of QCD

Taken from http://theory.gsi.de/~friman/trento_06.html

Constraint of Cosmological Parameters from CMB

Observation COBE, WMAP,…

CMB tools: CMBFAST, CAMB,

…

Taken from http://lambda.gsfc.nasa.gov/

"Best" cosmological parameters C.L.Bennett et al.,Ap.J.Suppl('03)

Table 3. "Best" Cosmological Parameter

^afrom COBE (Mather et al. 1999)

derived from COBE (Mather et al. 1999

 $^{\circ}l_{eff}\approx 700$ $\ell_A \equiv \pi \theta_A^{-1}$ $\theta_A \equiv r_s d_a^{-1}$

Analysis codes play a major role in precision physics.

Taken from http://theory.gsi.de/~friman/trento_06.html

"Mind The Gap"

•The first principle (QuantumChromo Dynamics)

$$
\mathcal{L}=\bar{\psi}_i(i\gamma_\mu D_{ij}^\mu-m\delta_{ij})\psi_j-\frac{\texttt{1}}{\texttt{4}}F_{\mu\nu a}F^{\mu\nu a}
$$

•Inputs to phenomenology (lattice QCD)

 $P = P(e, \Omega)$ mplexity Non-linear interactions of gluons •Phenomenos and hydrodynamics) Dynamical many body system Color confinement

ex.)QCDOC

•Experimental data @ Relativistic Heavy Ion Collider \sim 150 papers from 4 collaborations since 2000

Lessons from Other Fields

phenomenology people

experimental people

lattice people

IO Necessity of collaborative activity in more extended community ⚫Necessity of analysis tool(s) in R.H.I.C. physics ⚫Toward establishment of the "observational QGP physics"

Dynamical Modeling Based on 3D Ideal Hydrodynamics

BULK •3D Hydro •3D Hydro+Cascade •CGC initial conditions

Full 3D Hydro+Cascade Model $\overline{0}$ *z* **de de de l'assemble de l'assemble de l'assemble de l'assemble de l'assemble de la de la de l'assemble de la de l'assemble de la de** Glauber/ Color Glass **Condensate** QGP fluids via ideal hydrodynamics Hadron gas via hadronic cascade model

TH et al. ('06).

Centrality Dependence of V_2

Discovery of "large" v₂ at

 \bullet v₂ data are comparable with hydro results for the first time. • Hadronic cascade models

cannot reproduce data.

This is the first time for ideal hydro at work in H.I.C. \rightarrow Strong motivation to develop hydro-based tools.

(Courtesy of M.Isse)

Pseudorapidity Dependence of v_2 TH et al. ('06).

 $\cdot v_2$ data are comparable with 3D hydro results again around h=0 \bullet Not a QGP gas \rightarrow sQGP •Nevertheless, large discrepancy in forward/backward rapidity → See next slides

TH('02); TH and K.Tsuda('02);

Importance of Hadronic "Corona"

AuAu200 0.12 QGP fluid+hadron gas $b = 8.5$ fm QGP+hadron fluids 0.1 QGP only PHOBOS 25-50% 0.08 5° 0.06 0.04 0.02 -2 2 -6 n

T.Hirano et al.,Phys.Lett.B**636**(2006)299.

•Boltzmann Eq. for hadrons instead of hydrodynamics •Including viscosity through finite mean free path

Perfect fluid QGP core $+$ Dissipative hadronic corona

T.Hirano and M.Gyulassy,Nucl.Phys.**A769** (2006)71.

Highlights from a QGP Hydro + Hadronic Cascade Model

TH et al. (in preparation).

Origin of Mass Ordering

Mass ordering behavior comes from hadronic rescattering. → Not a direct signal of "perfect fluid QGP"

 \rightarrow Interplay btw. QGP fluid and hadron gas

Sensitivity to Initial Conditions

hydro+JAM

 $T^{th} = 100$ MeV

 $T^{th} = 169$ MeV

PHOBOS 25-50%

 0.2

 0.18

 0.16

 0.14

 $b = 8.5$ fm

Novel initial conditions from "Color Glass Condensate" lead to large eccentricity.

Hirano and Nara('04), Hirano et al.('06) Kuhlman et al.('06), Drescher et al.('06)

Need viscosity/soft EOS in QGP!

Excitation Function of v_2

Hadronic Dissipation •is huge at SPS. \bullet still affects v_2 at RHIC. •is almost negligible at LHC.

HARD/RARE PROBES •Hydro+Jet model •Hydro+J/Y model

Interplay btw. soft and hard •Jet-fluid string formation

Utilization of Hydro Results

Jet quenching J/psi suppression charm diffusion

Recombination **Coalescence**

Thermal radiation (photon/dilepton)

Information along a path Information on surface

Information inside medium

Jet Propagation through a QGP Fluid

hydro+jet model

T.Hirano and Y.Nara ('02-)

Full 3D ideal hydrodynamics

 $+$

PYTHIA

Parton distribution fn. pQCD 2→2 processes Fragmentation Gyulassy-Levai-Vitev formula Inelastic energy loss

p_T Distribution from Hydro+Jet Model

Soft + Quenched Hard picture works reasonably well →Re/Co components may be needed for a better description

Note: Hadronic cascade is switched off in the bulk

T.Hirano and Y.Nara, Phys.Rev.C**69**,034908(2004).

Back-To-Back Correlation

Not only energy loss but also deflection are found to be important.

T.Hirano and Y.Nara, Phys.Rev.Lett.**91**,082301(2003).

Onset of J/Y Melting in a QGP Fluid Gunji, Hamagaki, Hatsuda, Hirano, PRC (in press)

J/Y is assumed to melt away above $T_{J/v} \sim 2T_c$ Local temperature from full 3D hydro simulations

Heavy Quark Diffusion in a QGP Fluid

 $v₂$ is sensitive to relaxation time for heavy quarks in QGP. Toward comprehensive understanding of transport properties of QGP

Talk by Akamatsu at KPS meeting yesterday Akamatsu, Hatsuda, Hirano (work in progress)

Hadronization through Jet-Fluid String Formation

Hirano, Isse, Nara, Ohnishi, Yoshino, Mizukawa, nucl-th/0702068; (work in progress)

Summary & Outlook

- ⚫ Development of an analysis code in H.I.C.
	- QGP fluid + hadronic gas picture works well
	- ⚫ Sensitivity to initial conditions in hydro
	- ⚫ EOS dependence (not discussed in this talk)
- **Application of hydro results**
	- ⚫ Single- and di-hadron distributions at high p_T
	- J/Y suppression
	- Jet-Fluid String formation
	- (EM probes)

⚫ Toward an open and standard tool in H.I.C. (like PYTHIA, CMBFAST, …)

Thanks!

Dynamics of Heavy Ion Collisions Freeze-Out T_{ch} T_c I_{fo} **Freeze** "Re-confinem **Hadron Gas** Expansion Thermal QGP $\tau_0 \leq 1$ fm/c First contac (two bunches of gluons)Z **Deam** Temperature scale Time scale 100MeV~10¹²K 10 fm/c \sim 10^{-23} sec

T.Hirano and M.Gyulassy,Nucl.Phys.**A769** (2006)71.

Hadron Gas Instead of Hadron Fluid A QGP fluid surrounded "Reynolds number"

QGP core by hadronic gas

QGP: Liquid (hydro picture) Hadron: Gas (particle picture)

 $=\frac{4}{3T\tau}\frac{\eta}{s}$ Matter proper part: (shear viscosity) (entropy density)

small

in QGP

big in Hadron

TH and Gyulassy ('06)

A Probable Scenario h : shear viscosity, *s* : entropy density

 $\eta(\mathsf{sQGP}) > \eta(\mathsf{hadron})!$ •Absolute value of viscosity •Its ratio to entropy density

 $\eta/s(SQGP) \ll \eta/s(hadron)$

QGP fluid at work! → Rapid increase of entropy density?! → Deconfinement Signal?!

$v_2(p_T)$ for pi, K, and p

Due to fluctuation of geometry

TH et al. (in preparation).