Dynamical Modeling of Relativistic Heavy Ion Collisions

Tetsufumi Hirano

Physics the University of Tokyo hirano_at_phys.s.u-tokyo.ac.jp http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano

Collaborators: M.Gyulassy, Y.Nara, U.Heinz, D.Kharzeev, R.Lacey, T.Gunji, H.Hamagaki, T.Hatsuda, M.Isse, A.Ohnishi, K.Yoshino, R.Mizukawa, N.Akamatsu

Oct.19-20, 2007

Outline

- Introduction
- Dynamical modeling of heavy ion collisions
- Bulk
- Hard/rare probes and interplay btw. soft and hard
- Summary and Outlook

Phase Diagram of QCD

Understanding of phase diagram and EOS is one of the main topics in modern nuclear physics.

Taken from http://theory.gsi.de/~friman/trento_06.html

TOV eq. plays an important role in understanding of EOS

Phase Diagram of QCD

Taken from http://theory.gsi.de/~friman/trento_06.html

Constraint of Cosmological Parameters from CMB

Observation COBE, WMAP,...

CMB tools: CMBFAST, CAMB,

Taken from http://lambda.gsfc.nasa.gov/

"Best" cosmological parameters C.L.Bennett et al.,Ap.J.Suppl('03)

Table 3. "Best" Cosmological Parameters

Description	Symbol	Value	+ uncertainty	 uncertainty
Total density	Ω_{tot}	1.02	0.02	0.02
Equation of state of quintessence	w	< -0.78	95% CL	
Dark energy density	Ω_{Λ}	0.73	0.04	0.04
Baryon density	$\Omega_b h^2$	0.0224	0.0009	0.0009
Baryon density	Ω_b	0.044	0.004	0.004
Baryon density (cm ⁻³)	n_b	2.5×10^{-7}	0.1×10^{-7}	0.1×10^{-7}
Matter density	$\Omega_m h^2$	0.135	0.008	0.009
Matter density	Ω_m	0.27	0.04	0.04
Light neutrino density	$\Omega_{\nu}h^2$	< 0.0076	95% CL	
CMB temperature (K) ^a	$T_{\rm cmb}$	2.725	0.002	0.002
CMB photon density (cm ⁻³) ^b	n_{γ}	410.4	0.9	0.9
Baryon-to-photon ratio	ή	6.1×10^{-10}	0.3×10^{-10}	0.2×10^{-10}
Baryon-to-matter ratio	$\Omega_b \Omega_m^{-1}$	0.17	0.01	0.01
Fluctuation amplitude in $8h^{-1}$ Mpc spheres	σ_8	0.84	0.04	0.04
Low-z cluster abundance scaling	$\sigma_8 \Omega_m^{0.5}$	0.44	0.04	0.05
Power spectrum normalization (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	A	0.833	0.086	0.083
Scalar spectral index (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	n_s	0.93	0.03	0.03
Running index slope (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	$dn_s/d\ln k$	-0.031	0.016	0.018
Tensor-to-scalar ratio (at $k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.90	95% CL	
Redshift of decoupling	z_{dec}	1089	1	1
Thickness of decoupling (FWHM)	Δz_{dec}	195	2	2
Hubble constant	h	0.71	0.04	0.03
Age of universe (Gyr)	to	13.7	0.2	0.2
Age at decoupling (kyr)	t_{dec}	379	8	7
Age at reionization (Myr, 95% CL))	t_r	180	220	80
Decoupling time interval (kyr)	Δt_{dec}	118	3	2
Redshift of matter-energy equality	z_{eq}	3233	194	210
Reionization optical depth	τ	0.17	0.04	0.04
Redshift of reionization (95% CL)	z_r	20	10	9
Sound horizon at decoupling (°)	θ_A	0.598	0.002	0.002
Angular size distance (Gpc)	d_A	14.0	0.2	0.3
A coustic scale ^d	ℓ_A	301	1	1
Sound horizon at decoupling (Mpc) ^d	r_s	147	2	2

from COBE (Mather et al. 1999)

^bderived from *COBE* (Mather et al. 1999)

 $^{c}l_{eff} \approx 700$ $^{d}\ell_A \equiv \pi \theta_A^{-1}$ $\theta_A \equiv r_s d_a^{-1}$

Analysis codes play a major role in precision physics.

Taken from http://theory.gsi.de/~friman/trento_06.html

"Mind The Gap"

•The first principle (QuantumChromo Dynamics)

$$\mathcal{L} = \bar{\psi}_i (i\gamma_\mu D_{ij}^\mu - m\delta_{ij})\psi_j - \frac{\mathbf{I}}{4}F_{\mu\nu a}F^{\mu\nu a}$$

Inputs to phenomenology (lattice QCD)

P = P(e, n Opm ptexity)Non-linear interactions of gluons Phenomenoges (by codynamics)

ex.)QCDOC

 Experimental data @ Relativistic Heavy Ion Collider ~150 papers from 4 collaborations since 2000

Lessons from Other Fields

phenomenology people

experimental people

lattice people

 Necessity of collaborative activity in more extended community
 Necessity of analysis tool(s) in R.H.I.C. physics
 Toward establishment of the "observational QGP physics"

Dynamical **Modeling Based** on 3D Ideal Hydrodynamics

BULK 3D Hydro 3D Hydro+Cascade CGC initial conditions

Full 3D Hydro+Cascade Model Hadron gas via hadronic cascade model **QGP fluids** via ideal hydrodynamics Glauber/ **Color Glass** Condensate

TH et al. ('06).

Centrality Dependence of v_2

Discovery of "large" v₂ at RHIC

 v₂ data are comparable with hydro results for the first time.

• Hadronic cascade models cannot reproduce data.

This is the first time for jdeal hydro at work in H.I.C. → Strong motivation to develop hydro-based tools.

Result from a hadronic cascade (JAM) (Courtesy of M.Isse)

Pseudorapidity TH et al. ('06). Dependence of v₂

•v₂ data are comparable with 3D hydro results again around h=0
•Not a QGP gas → sQGP
•Nevertheless, large discrepancy in forward/backward rapidity
→ See next slides

TH('02); TH and K.Tsuda('02);

Importance of Hadronic "Corona"

AuAu200 0.12 QGP fluid+hadron gas b=8.5fm QGP+hadron fluids 0.1 QGP only PHOBOS 25-50% 0.08 S[™] 0.06 0.04 0.02 -2 2

T.Hirano et al., Phys.Lett.B636(2006)299.

Boltzmann Eq. for hadrons instead of hydrodynamics
Including viscosity through finite mean free path

Perfect fluid QGP core + Dissipative hadronic corona

T.Hirano and M.Gyulassy, Nucl. Phys. A769 (2006)71.

Highlights from a QGP Hydro + Hadronic Cascade Model

TH et al. (in preparation).

Origin of Mass Ordering

Mass ordering behavior comes from hadronic rescattering.

- → Not a direct signal of "perfect fluid QGP"
- → Interplay btw. QGP fluid and hadron gas

Sensitivity to Initial Conditions

Novel initial conditions from "Color Glass Condensate" lead to large eccentricity.

Hirano and Nara('04), Hirano et al.('06) Kuhlman et al.('06), Drescher et al.('06)

Need viscosity/soft EOS in QGP!

Excitation Function of v₂

Hadronic Dissipation
is huge at SPS.
still affects v₂ at RHIC.
is almost negligible at LHC. HARD/RARE PROBESHydro+Jet modelHydro+J/Y model

Interplay btw. soft and hardJet-fluid string formation

Utilization of Hydro Results

Jet quenching J/psi suppression charm diffusion

Recombination Coalescence Thermal radiation (photon/dilepton)

Information along a path

Information on surface Information inside medium

Jet Propagation through a QGP Fluid

hydro+jet model

T.Hirano and Y.Nara ('02-)

Full 3D ideal hydrodynamics

T <u>PYTHIA</u> Parton distribution fn. pQCD 2→2 processes Fragmentation <u>Gyulassy-Levai-Vitev</u>

<u>formula</u> Inelastic energy loss

p_⊤ Distribution from Hydro+Jet Model

Soft + Quenched Hard picture works reasonably well →Re/Co components may be needed for a better description

Note: Hadronic cascade is switched off in the bulk

T.Hirano and Y.Nara, Phys.Rev.C69,034908(2004).

Back-To-Back Correlation

Not only energy loss but also deflection are found to be important.

T.Hirano and Y.Nara, Phys.Rev.Lett.**91**,082301(2003).

Gunji, Hamagaki, Hatsuda, Hirano, PRC (in press) Onset of J/Y Melting in a QGP Fluid

J/Y is assumed to melt away above $T_{J/y} \sim 2T_c$ Local temperature from full 3D hydro simulations

Heavy Quark Diffusion in a QGP Fluid

v₂ is sensitive to relaxation time for heavy quarks in QGP. Toward comprehensive understanding of transport properties of QGP

Talk by Akamatsu at KPS meeting yesterday Akamatsu, Hatsuda, Hirano (work in progress)

Hadronization through Jet-Fluid String Formation

Hirano, Isse, Nara, Ohnishi, Yoshino, Mizukawa, nucl-th/0702068; (work in progress)

Summary & Outlook

- Development of an analysis code in H.I.C.
 - QGP fluid + hadronic gas picture works well
 - Sensitivity to initial conditions in hydro
 - EOS dependence (not discussed in this talk)
- Application of hydro results
 - \bullet Single- and di-hadron distributions at high p_{T}
 - J/ Ψ suppression
 - Jet-Fluid String formation
 - (EM probes)

 Toward an open and standard tool in H.I.C. (like PYTHIA, CMBFAST, ...)

Thanks!

Dynamics of Heavy Ion Collisions Freeze-Out T_{ch} T_c fo Freeze "Re-confinem Hadron Gas Expansion Thermal QGP $\tau_0 \leq 1 \text{ fm/c}$ First contac (two bunches of gluons) Ζ bean. Temperature scale Time scale 100MeV~10¹²K $10 fm/c \sim 10^{-23} sec$

.

T.Hirano and M.Gyulassy, Nucl. Phys. A769 (2006)71.

Hadron Gas Instead of Hadron Fluid

A QGP fluid surrounded by hadronic gas

QGP: Liquid (hydro picture) Hadron: Gas (particle picture)

"Reynolds number" $=\frac{4}{3T\tau}\frac{\eta}{s}$ Matter proper part: (shear viscosity) (entropy density) small in Hadron in QGP

TH and Gyulassy ('06)

A Probable Scenario h: shear viscosity, s : entropy density

•Absolute value of viscosity $\eta(sQGP) > \eta(hadron)!$

•Its ratio to entropy density $\eta/s(sQGP) \ll \eta/s(hadron)$

QGP fluid at work! → Rapid increase of entropy density?! → Deconfinement Signal?!

v₂(p_T) for pi, K, and p

Due to fluctuation of geometry

TH et al. (in preparation).