RPC Upgrade for PHENIX

Byungsik Hong Korea University

Contents

- Motivations
- PHENIX RPC system
- RPC production facilities at Korea University
- PHENIX schedule
- Summary

Parton Distribution Functions

-Spin independen t quark

momentum distributi on q(x)

-Spin independent gluon momentum distributi on G(x)

-Spin dependent quark distributi on

$$\Delta q(x) = q^{\uparrow\uparrow}(x) - q^{\uparrow\downarrow}(x)$$

-Spin dependent gluon distributi on

$$\Delta G(x) = G^{\uparrow\uparrow}(x) - G^{\uparrow\downarrow}(x)$$

the parton in the proton)

Present Understanding

- Spin dependent quark distribution functions by the QCD analysis of DIS data
 - M. Hirai, S. Kumano, N. Saito, Phys. Rev. D 74, 014015 (2006)

Present Understanding

- Spin dependent gluon distribution functions by the QCD analysis of DIS data
 - M. Hirai, S. Kumano, N. Saito, Phys. Rev. D 74, 014015 (2006)

Testing Gluon Spin

Direct photon (+single jet) production

- Double spin asymmetry
- PHENIX NCC can be used

(See the talk by Prof. Youngil Kwon tomorrow)

Testing Quark and Antiquark Spins

- □ Main motivation for RPC upgrade
- W-boson production
 - The sea quark polarizations of the proton can be probed by
 - The single spin asymmetry, A_L, of W⁺ and W⁻.

$$A_{L}^{W^{+}} = \frac{1}{P} \times \frac{N^{\uparrow}(W^{+} \to \mu^{+}) - N^{\downarrow}(W^{+} \to \mu^{+})}{N^{\uparrow}(W^{+} \to \mu^{+}) + N^{\downarrow}(W^{+} \to \mu^{+})}$$
$$A_{L}^{W^{-}} = \frac{1}{P} \times \frac{N^{\uparrow}(W^{-} \to \mu^{-}) - N^{\downarrow}(W^{-} \to \mu^{-})}{N^{\uparrow}(W^{-} \to \mu^{-}) + N^{\downarrow}(W^{-} \to \mu^{-})}$$

Testing Flavor Asymmetry

$$R(x_F) \equiv \frac{d\sigma(pp \to W^+ + X \to \mu^+ + X)/dx_F}{d\sigma(pp \to W^- + X \to \mu^- + X)/dx_F} \approx \frac{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}{\overline{u}(x_1)d(x_2) + d(x_1)\overline{u}(x_2)}$$

where $x_F = x_1 - x_2$.

(Case I) For
$$x_F = 0, x = x_1 = x_2$$

 $(x = 0.16 \text{ at } \sqrt{s} = 500 \text{ GeV}),$
 $R(x_F = 0) \approx \frac{u(x)}{d(x)} \frac{\overline{d}(x)}{\overline{u}(x)}$
 $\left[\frac{u(x)}{d(x)} \approx 2.0\right] \Rightarrow \left[\frac{\overline{d}(x)}{\overline{u}(x)} \approx \frac{1}{2}R(0)\right]$

Testing Flavor Asymmetry

The *u/d* ratio at large-*x* region is not well known, and the theoretical predictions are diverse, depending on how to treat nuclear effects.

Requirements

PHENIX RPC Locations

October 19, 2007

ths in mm		RPC1a		RPC1b		RPC2		RPC3	
a in deg.	theta (deg)	Radius	width	radius	width	radius	width		width
possible						5280.2			
	34.36	933.2	773.1	1016.8	842.3	4675.4			
ring 8						strips: 467.9	,		
	31.60	strips: 181.4	4 x 12.1 (64)	strips: 197.	7 x 13.2 (64)	421			
ring 7							5	•	
	28.84	751.8	622.8	819.1	678.F		alei	4991.4	4135
ring 6						du c		strips: 554.2 x	<i>64.6 (</i> 64)
	26.09	strips: 164.	3 x 9.7 (64)	strips: 177.	7.	, ² 2	2773.9	4437.2	3675
ring 5					WY.	.8.9	9 x 48.8 (57)	strips: 528.6 x	64.6 (57)
	23.33	588.7	487.7	. N		∠949.4	2443.4	3908.6	3238
ring 4						strips: 382.7 x 38.2 (64)		strips: 507.1 x 50.6 (64)	
	20.57	strips: 151.	1 x 15.2 (? [°]	<12)	ら く	22566.8	2126.4	3401.5	2817
ring 3				5 70	NY	strips: 369.	1 x 38.2 (56)	strips: 493.3 x	50.6 (56)
	17.81	438 -	NN	~ 2	395.9	2197.7	1820.6	2912.3	2412
ring2			\mathcal{Y}	10-		strips: 357.8	8 x 28.4 (64)	strips: 474.2 x	37.7 (64)
	15.06	60.		9 strips: 153.	6 x 12.4 (32)	1839.8	1524.2	2438.1	2019
ring1		Ne	α Y_			strips: 3548.	7 x 28.4 (54)	strips: 462.1 x	37.7 (54)
	· Y	~ ~ 6	246.6	324.3	268.6	1491.1	1235.3	1976.1	1637
por	e j	っと				1468.4		1926.4	
, gap: ring 4 and 5		split gaps: ring 2 and 3 + ring 6.and 7		no split gaps		no split gaps			

Why RPC?

Characteristics of RPC

- Fast Response
 - Suitable for the trigger device
- Good timing resolution: 1~2 ns
- Good spatial resolution: typically ~cm
 - determined by the strip width
- Low cost

Why Korea University?

The nuclear & high-energy physics groups of Korea University have been active members of the CMS (Compact Muon Solenoid) of LHC at CERN since 1997.

Korean RPCs in CMS

CMS Endcap RPCs

1. Function : L1 muon triggers 2 wings (RE+, RE-) 4 stations (RE1, RE2, RE3, RE4) **Pseudo rapidity coverage :** $0.9 < \eta < 2.1$ (1.6) η segmentations : 10 (6) 2. Total # of RPCs : 756 (432) Total # of FEBs : 2,268 (1,296) Total # of channels : 85,248 (41,472) 3. By March 2007, the gap production for phase I $(0.9 < \eta < 1.6)$ was completed for the first operation of CMS in 2008.

A Brief History

- 1. Fundamental studies to develop the endcap RPCs (1997~)
 - 1) Beam tests by using high intensity muon beams at CERN
 - 2) Cosmic muon tests at Korea Univ.
 - 3) Long term aging studies by γ 's and neutrons at Korea Univ.
- 2. Design of double gap RPCs for the endcap region (2000~2003)
 - 1) Chamber designs
 - 2) Services for HV, LV, gas, electronics on the chamber level
- 3. Manufacturing the production facilities at Korea Univ. (2000~2003)
 - 1) Gap and chamber production facilities
 - 2) Testing facilities for the quality control
- 4. Mass production of the endcap RPCs (2004~)
 - 1) Phase I production (0.9 < η < 1.6, total 432 gaps) was completed.
 - 2) Phase II production (1.6 < η < 2.1) is expected to start next year.

Performance of Korean RPCs

Characteristics	CMS Requirements	Test Results	
Time Resolution	< 3 ns	< 1.5 ns	
Efficiency	> 95 %	> 95 %	
Rate Capability	> 1 kHz/cm ²	> 1 kHz/cm ²	
Noise Rate	< 15 Hz/cm ²	< 10 Hz/cm ²	
Plateau Region	> 300 V	> 400 V	

October 19, 2007

Photo taken in Nov. 2006

RPC3 on YE3

PHENIX Schedule

- □ ~Feb. 2008
 - Production of complete half octant (prototype D)
- □ ~July 2008
 - Complete assembly and testing RPC3
- **2009**
 - Complete the installation of all RPCs
- **2009-2012**
 - Running at \sqrt{s} = 500 GeV
 - Projected yield of $\int Ldt \sim 950 \text{ pb}^{-1}$

Summary

- The origin of the proton spin is the fundamental question of nuclear physics.
- The PHENIX is upgrading the muon trigger system by using the RPCs in order to filter out the small cross section W candidate events.
 - The flavor dependent quark and anti-quark spin distribution functions can be measured.
- The Korea University is responsible for the production of all RPC gas gaps.
- □ The mass production and installation will be completed by the end of 2009.
- Additional potential application of *the L1 muon trigger for heavy-ion collisions* still need to be explored, for example,
 - Heavy-flavor trigger in combination with the forward vertex upgrade
 - Dimuon trigger for the vector mesons for RHIC II

Extras

PHENIX Sensitivity for Gluion Spin

M. Hirai, H.Kobayashi, M. Miyama, et al.

First Constraint for $\triangle G$ by $A_{LL}(\pi^0)$

NLO QCD Analysis of DIS $A_1 + A_{LL}(\pi^0)$

M. Hirai, S. Kumano, N. Saito, hep-ph/0603212 (Asymmetry Analysis Collaboration)

PHENIX RUN 5 already reduces the ΔG uncertainties significantly.