

Korean Heavy Ion Meeting 2007-10 on Physics with PHENIX and ALICE

Photon Physics in ALICE

Jeju in Korea

Oct. 19 - 20, 2007

Toru Sugitate / 杉立 徹 Hiroshima University / 広島大学大学院理学研究科 sugitate@hiroshima-u.ac.jp

What learned at RHIC

 広島大学 page 2

E802/859/866 @AGS-BNL NA44/WA98 @SPS-CERN PHENIX @RHIC-BNL

p=14.6 GeV/A, $\sqrt{s_{NN}}$ =5.4 GeV p=160 GeV/A, $\sqrt{s_{NN}}$ =17 GeV p=100+100 GeV/A, $\sqrt{s_{NN}}$ =200 GeV

- hot: thermally radiative (!?)
 - thermal photons (!?), T~500MeV
- dense: energy loss of (even heavy) quarks, ε>15GeV/fm³, dN_g/dy>1100
 - jet quenching (high p_t suppression)
 - jet modification
- partonic: quarks' degrees of freedom, screening
 - quark number scaling of collective motion
 - \Box J/ Ψ suppression
- strongly coupled: perfect fluidity
 - hydro-dynamic behavior of collective motion

How it impacts to people?

広 島 大 学

Heavy Ion Collisions at LHC

 広島大学 page 4

$\sqrt{s} = 14 \text{ TeV for proton + proton}$ $\sqrt{s_{NN}} = 5.5 \text{ TeV for Pb + Pb}$ $\sqrt{s_{NN}}$ at LHC = 28 x RHIC = 320 x SPS = 1000 x AGS

New features at LHC

Au+Au (b<3) $\rightarrow \pi^{\circ}$ s = 20, 200, 5500 AGeV

広島大学

page 5

One dedicated exp. for HI Physics $\frac{1}{2}$

ALICE = STAR + PHENIX + \cdot

10

ALICE detector n acceptance (charged particles)

PC

(full tracking)

V0A FMD A

T0 A

SPD outer layer

central barrel: -0.9 < η **< 0.9**

- tracking and particle identification in full azimuth
- partial coverage of HMPID,
 PHOS, EMCal
- forward μ arm: 4 < η < -2.4
- multiplicity: 3 < η < 5.4</p>

Central barrel support

Time Projection Chamber

広島大学

page 8

Inner Tracking System

◆ tracking (|η|< 1) + multiplicity (|η|< 2) ◆ Si pixel/drift/strip ♦ X/X₀(%)="4.4"

ITS Installation 15.3.07

dit 1

and the

E028 / 18 Oct. 2007

INTERNET

Transition Radiation Detector

tracking and particle identification

- \Box 400 600 μ m resolution in r ϕ , 23 mm in z
- \Box e/ π separation > 100 at p_t > 3 GeV/*c*
- ♦ |η| < 0.9, full azimuth</p>
 - \Box X/X₀(%)= "14.3"

Time of Flight Detector

multi-gap resistive plate chamber (MRPC)

- □ time resolution < 100 ps
- □ X/X₀(%)="20"

• $|\eta| < 0.9$, full azimuth; 3.7 m from beam axis

広島大学

page 13

Installation of TRD&TOF

2-3/18 TRD and 9/18 TOF for 2007

High Momentum PID

ring imaging Cherenkov with CsI photo-cathodes
|η| < 0.5, Δφ = 60 degrees
built and installed (not yet in this picture)

広 島 大 学

page 15

Photon Spectrometer (PHOS)

high-granularity, high-resolution EM calorimeter

- 64x56x5 PbWO₄ crystals readout with APD/CSP
- \Box for photons and neutral mesons measurements, and for γ -jet tagging
- providing level-0 and level-1 trigger.

Toru Sugitate / Hiroshima Univ. / ALICE028 / 18 Oct. 2007

広島大学

page 16

Forward (Di-)Muon Spectrometer 広島大学

A 3Tm dipole magnet; largest warm ever.

• p>5GeV, 2.4 < η **< 4.0**

 \blacklozenge mass resolution: < 70 MeV at J/ Ψ , < 100 MeV at Υ

A large acceptance EMCal.

広島大学 page 18

EMCal (Pb/Sci+APD) Jet physics Element dim: 6x6x25cm $-0.7 < \eta < +0.7 & \Delta\phi=110^{\circ}$ $\Delta E/E=8\%/\sqrt{E}$ (GeV) $\oplus 1\%$

PHOS (PWO+APD)

 $\begin{array}{l} \mbox{Photon physics} \\ \mbox{Element dim: } 2.2x2.2x18cm \\ -0.12 < \eta < +0.12 & \Delta \varphi {=}\,100^{\circ} \\ \Delta E/E {=}\,3\%/\sqrt{E}\,(GeV) \end{array}$

Forward Detectors

page 19

広島大学

Data Acquisition System and HLT^{広島大学}

DAQ: be fast and scalable

- up to 3 Gbyte/s (in&out)
- commodity PC's and
- fast network switches

HLT: be fast and flexible

- event selection
- data compression
- selective R/O

СТ

P

- up to 20 GB/s data input
- 200Hz Pb-Pb

Relativistic Heavy Ion Collision and photons応島大学 page 21

Early statepmanifestation 100 Gollective behavior: event-by-event particle comp. and

efficients: Musice of identified mesons up to ~100 Gev spectra

Elergydosarof partanetinghygeliglgoput to Geometry DAtheremitting source: HBT,

plasma: jet quenching; high pt spectra; open 23, impact parameter via zero-degree energy flow Shanreand open beauty with large transverse momphuto insients and the elisings tomain s(NN)**(1/2) = 130-GeV.

By PHENIX Collaboration (K. Adcox et al.). Sep 2001. 6pp.

Toru SudPublished in Phys. Rev. Lett. 88:022301:2002 / @Print Archive: nucl-ex/0109003

Photon Physics at LHC

R&D studies in Hiroshima

Expertise on PbWO₄ and APD

calorimeter oriented property studies since 2000

temperature dependence down to -35 °C

- PbWO₄: photon yield, decay constants
- APD: gain, breakdown voltage, noise
- crystals from different manufactores

photon yield decay time

広島大学

page 24

PHOS parameters

density	8.28 g/cm ³		
radiation length	0.89 cm		
Moliere radius	2.2 cm		
peak emission	420-440 nm		
refractive index	2.3		
element	Lead tungstate crystal coupled with APD		
number of elements	17,920 (3,584/module)		
crystal dimensions	22×22×180 mm		
distance from IP	4400 mm		
ηcoverage	-0.12<η<+0.12		
¢ coverage	100° (20° /module)		
η granularity	Δη=0.005		
ø granularity	∆¢=0.005 rad		
area covers	8.67 m ²		
energy range	5 MeV \sim 80 GeV		
energy resolution	3.6% / VE(GeV)		
Π^0 identification	0.2 < p < 60 GeV		
weight	12.9 t (721g/ea)		

-25℃

operation temp.

広 島 大 学

page 25

High–Momentum Particle Identification Particle Identification Time Projection Chamber Detector Detector Absorber **Dipole Magnet** L3 Magnet PHOS SPECTROMETER Llice **Muon Chambers** Photon Spectrometer Inner Tracking System

First PHOS Module

広島大学 page 26

completed and tested at CERN PS/SPS in 2006

successfully read out with ALICE readout/DAQ system

1st PHOS module waiting in lab.^{K 広島大学}

PHOS Full-chain test-bench

PHOS Lab at Hiroshima

Photon Detectors at LHC

Image: Construction of the second	
CAL HCAL HCAL HCAL HCAL HCAL HCAL HCAL H	r ipole Magnet

Exp.	ATLAS		CMS		ALICE	
Name	LAr Barrel	LAr Endcap	ECAL(EB)	ECAL(EE)	PHOS	EMCal
Structure	Liquid Ar		PWO + APD		PWO + APD	Pb + APD
Coverage	0< η <1.4, 2π	1.4< η <3.2, 2π	0< η <1.5, 2π	1.5< η <3.0, 2π	0< η <0.12, 0.6π	0< η <0.7, 0.6π
Granularity ΔηχΔφ	0.003x0.100 0.025x0.025 0.025x0.050	0.025x0.100 0.025x0.025 0.025x0.050	0.0174x0.0174	0.0174x0.0174 to 0.05x0.05	0.004×0.004	0.0143x0.0143
Res.	10%/√E ⊕0.5%	10%/√E ⊕0.5%	2.7%/√E ⊕0.55%	5.7%/√E ⊕0.55%	3.3%/√E ⊕ 1.1%	7%/√E ⊕1.5%

Photon Physics in ALICE

広島大学 page 30

Physics issues

- \Box thermal γ
- $\square \pi^{\mathbf{0}}$ and η at high accuracy
- □ γ, π⁰ and η at high p_T up to ~80GeV
- non-photonic electrons
- jet fragmentation in medium
- direct γ-jet correlations
- □ γ-γ correlations
- and more...

Key words in recent

- **PWG4** (photons and high p_T)
 - jet fragmentation
 - jet correlations
 - γ-hadron correlations
 - prompt γ correlations
 - high p_T particles
 - **\square** $\pi^{\mathbf{0}}$ and γ correlation
 - isolation cuts
 - jet reconstruction
 - jet resolution
 - **\square** π^{0} reconstruction
 - and more...

LHC Accelerator

広島大学 page 31

Revised and adapted by Antonella Del Rosso, ETT Div., in collaboration with B. Desforges, SL Div., and D. Manglunki, PS Div. CERN, 23.05.01

LHC dipoles

 広島大学 page 32

Descent of the last magnet, 26 April 2007

30'000 km underground at 2 km/h!

Figure 7.5: Dipole magnetic flux plot

Dipole-dipole interconnect: electrical splices

Figure 7.12: LHC dipole cryomagnet Assembly

LHC update as of Jun.07

Inner Triplet Problem (March 2007) Q1 supports at IP 5L

- > 財政等の危機から、CERN研究計画の見直し
- > 2007年末のLHC始動@900GeVは省略
- > 2008年に陽子+陽子衝突実験の本格開始
- > 重イオン実験についてはコメント無し

General schedule

広 島 大 学

page 33

- Engineering run originally foreseen at end 2007 now precluded by delays in installation and equipment commissioning.
- 450 GeV operation now part of normal setting up procedure for beam commissioning to high-energy
- General schedule being reassessed, accounting for inner triplet repairs and their impact on sector commissioning
 - All technical systems commissioned to 7 TeV operation, and machine closed April 2008
 - Beam commissioning starts May 2008
 - > First collisions at 14 TeV c.m. July 2008
 - Pilot run pushed to 156 bunches for reaching 10³² cm⁻².s⁻¹ by end 2008
- No provision in success-oriented schedule for major mishaps, e.g. additional warm-up/cooldown of sector

日本チームの戦略

 検出器建設責任部分は当初研究計画の記載年次で進行させ、その結果、
 より多くの人材と活力を2008年の 陽子+陽子衝突実験、引き続く、
 鉛+鉛原子核衝突実験に投入し、
 世界をリードする研究成果を挙げる。

LHC Baseline program

expect ~ 10 year 'baseline' program 2008 – 2017
 pp: after few years diminishing return in terms of running time versus statistics
 HI: 3 D phase space to cover: statistics – beam type – beam energy

first 5 years (~ RHIC)

□ initial Pb-Pb run in 2008 (**1/20**th design L, i.e. ~ 5 x 10²⁵)

- □ 2 Pb-Pb runs (medium -> design Luminosity L ~ 10²⁷), integrate > 1nb⁻¹
- □ 1 p A run (measure cold nuclear matter effects, e.g. shadowing)
- □ 1 low mass ion run (energy density & volume dependence)
- \Box **continuous pp running** \sqrt{s} = 14 TeV (comparison data, some genuine pp physics)
- following ~ 5 years
 - program and priorities to be decided based on results
 - Iower energies (energy dependence, thresholds, RHIC, pp at 5.5 TeV)
 - additional AA & pA combinations
 - increased statistics
 - expect modest <u>detector modifications & upgrades</u>
 - discussion has started, R&D to follow after 2007, decisions ~ 2009

Analysis CPU farm

広島大学

c.f. PE1950(Xeon5160 x 2cpu)=3.1kSl2K Toru Sugitate / Hiroshima Univ. / ALICE028 / 18 Oct. 2007

Worldwide LHC Computing Grid^{K 広島大学}

🚾 🚾 Grid Projects Collaborating in LHC Computing Grid

LastBuild:Fri Mar 16 03:16:01 GMT 2007 GstatQuerv:2006-12-15

WLCG-ALICE Tier-2 at Hiroshima

- An LCG site "JP-HIROSHIMA-WLCG" with EGEE/gLite3.0
- Current resources; Xeon5160(2cores@3GHz)X2cpuX38box
 =76 cores (1TFLOPS) & 42TB storage
- Additional CPU's will be installed next week; Xeon5355(4cores@2.6GHz)X2cpuX32box
 =256 cores (2.7TFLOPS)
- Installing ALICE VO-Box now.
- Network B/W: MPLS 1Gbps on SINET3
- Associated Tier-1: ASGC & IN2P3
- •Contact person:

Dr. Takuma Horaguchi, Hiroshima

広島大学

page 38

Simulation studies

X-ray views projected on PHOS K 広島大学

The latest news

single photon sensitivity along two scenarios; with and without jet quenching.

広 島 大 学

page 41

ALICE Collaboration

ALICE-Japan

- a. PHOS検出器第1モジュールのエネルギー較正
- b. PHOS検出器第2及び第3モジュール組立部品の国内生産
- c. PHOS検出器総合品質検証及び機能開発国内拠点を構築
- d. PHOS検出器制御システムの開発
- e. WLCG-ALICE実験地域解析センター構築
- f. ALICE実験シミュレーション解析
- g. RHIC加速器PHENIX実験の継続とデータ解析
- h. ALICE国際共同実験実施に係る協定(MOU)締結

PHOS Detector

GRID Computing

Organization

広島大学

page 43

RHIC proven to be very successful not end of story; more funs now on stage properties of hot and dense partonic matter ALICE at LHC starting *in months* opening new ground for "soft" photonic probes uniquely suitable for hard and/or heavy probes Requesting 20% of LHC time for HI physics ALICE-J (Hiroshima, Tsukuba and Tokyo) in full commitment (along with RHIC)