Direct photon and high-pT π⁰ Correlations at RHIC and LHC

HIM(Heavy Ion Meeting) October, 2007

DongJo,Kim Jyväskylä University, Finland

Jan Rak, Rafael Diaz, Timo Alho, Norbert Novitzky, Tuomo Kalliokoski

Motivation

pQCD jet quenching :

□ Similar suppression pattern of high- p_T electrons from semi-leptonic *D* and *B* mesons decays; PRL 91, 172302 (2003)

□ No broadening of the associated correlation peak (nucl-ex/051000) in contrast to "standard picture" e.g. Phys. Lett. **B630**, 78 (2005)

Induced gluon radiation should violate the x_T scaling, not seen in π⁰ seen in h[±]. E.g. *Brodsky, Pirner and Raufeisen*, hep-ph/0510315.
 Why NLO pQCD work without k_T ?

Detailed understanding of "unmodified" parton properties in p+p is crucial p+p data @ RHIC and LHC

- Fragmentation function D(z)
- Jet shape
 - $\langle j_{\rm T} \rangle$ jet fragmentation transverse momentum
 - $\langle k_{\rm T} \rangle$ parton transverse momentum

pQCD quenching - modification of D(z)

Width of Away-Side Peaks - where is broadening ?

10-Jan-23

k_T physics

Reference to heavy ion:

- Broadening in the "punch through" high-pT ?
- Broadening in the "Mach cone" low-pT ?

Understanding of (p)QCD phenomena

- $\sqrt{\langle k^2_T \rangle}$ evolution with \sqrt{s} .
- Resummation techniques *Vogelsang*, *Sterman*, *Keusza Nucl Phys A721*, *591*(2003).
- NLO physics p_{out} distribution.

Hard scattering - k_T

Trigger bias

There are ALWAYS two types of trigger biases when correlating $p_{Ttrigger} \neq p_{Tassoc}$

Selecting events with $p_{Tt} > p_{Ta}$ forces k_T vector toward trigger jet:

 $\langle \hat{p}_{Ttrigg} \rangle > \langle \hat{p}_{Tassoc} \rangle$

Trigger associated spectra are insensitive to D(z)

M.J. Tannenbaum Approximation - Incomplete Gamma function when assumed power law for final state PDF and exp for D(z)

$$\frac{d\sigma_{\pi}}{dp_{Tt}} = \frac{1}{p_{T_t}^{n-1}} \int_{x_{T_t}}^1 dz_t z_t^{n-2} \exp{-bz_t} \approx \langle m \rangle (n-1) \frac{1}{\hat{x}_h} \frac{1}{(1+\frac{x_E}{\hat{x}_h})^n}$$

10-Jan-23

$\sqrt{k^2_T}$, $\langle z_t \rangle$ in p+p @ 200 GeV

Systematic errors comes from unknown ratio gluon/quark jet => D(z) slope.

NLO at work at RHIC.

Phys.Rev.Lett.91:241803,2003

LO pQCD and inclusive yield

LO gets the data only when Gaussian smearing of order of $\sqrt{\langle k_T^2 \rangle} \approx 3$ GeV/c used.

High p_T: ref. for HI, detailed NLO tests

PHENIX measured $\langle p_T \rangle_{pair}$ =3.36±0.09±0.43GeV/c

extrapolation to LHC $\sqrt{\langle k_T^2 \rangle}$ =6.1 GeV/c

10-Jan-23

Trigger γ associated spectra are sensitive to D(z)

Di-hadron correlations

$$\frac{d^2\sigma}{dp_{Tt}dx_E} = \frac{dp_{Ta}}{dx_E} \otimes \frac{d^2\sigma}{dp_{Tt}dp_{Ta}} \Box \frac{1}{\hat{x}_h} \int_{xTt}^{\hat{x}_{.pTt/pTa}} D(z_t) D(\frac{z_t p_{Ta}}{\hat{x}_h p_{Tt}}) \Sigma'(\frac{p_{Tt}}{z_t}) dz_t$$

Direct photon correlations $D(z_t) \rightarrow \delta(z_t)$

No trigger bias - associated spectra reflect the actual Fragmentation Function

π^0 -h vs Direct γ -h correlation functions

Direct γ-h(PYTHIA)

10-Jan-23

Direct photon measurement

Very Challenging measurement: γ/π⁰ < 0.1 in accessible kinematic region

How to construct direct γ-h yield

- ii. Construct decay γ -h yield via:
 - Pair by pair weighted summation method
 - convolutes all π^0 -h pair contributions from higher p_T
 - Weight reflects the probability from kinematics for a π^0 at given p_T to decay into a photon in a given p_T range
- iii. Subtraction via:

$$Y_{dir-h} = \frac{1}{1 - 1/R} (Y_{inc-h} - \frac{1}{R} Y_{dec-h})$$

DongJo Kim, HIM 2007

PHENIX $\sqrt{s}=200$ GeV π^0 and dir- γ assoc. distributions

$$x_E = \left| \frac{\stackrel{\mathsf{r}}{p_{Ta}} \cdot \stackrel{\mathsf{r}}{p_{Tt}}}{\stackrel{\mathsf{r}}{p_{Tt}}} \right| = -\frac{p_{Ta}}{p_{Tt}} \cos \Delta \phi \approx -\frac{p_{Ta}}{p_{Tt}}$$

Exponential slopes still vary with trigger $\gamma p_{T\gamma}$.

If $dN/dx_E \propto dN/dz$ then the local slope should be $p_{T\gamma}$ independent.

10-Jan-23

Initial/Final State Radiation (ex)

A Caution should be taken into for "Jet-Quenching model"

Soft + hard QCD radiation k_T phenomenology

Compton photo-production $q + g \rightarrow \text{quark}(\dot{q}_T) + \text{photon}(p_{T\gamma})$

Back-to-back balanced $\frac{d\sigma}{d\Delta\varphi} = \delta(\varphi - \pi) \qquad \frac{d\sigma}{dq_T} \Big|_{p_{T\gamma}} = \delta(q_T - p_{T\gamma})$

Soft QCD radiation

Hard NLO radiation not in PYTHIA

PYTHIA γ-h simulations

PYTHIA γ-h simulation - mom. imbalance

PYTHIA γ-h simulation p_{T,pair}- γ correlation

- p_{T,pair} correlated with trigger photon.
 (IR/FR ,k_T : "ON")
- 2) Not in the case of "Initial State Radiation".
 - It is due to the collinearity of initial quark with photon

Before and After the Correction

Analytic approach much simpler solution than what we found in PRD

In the similar way as we did in *Phys. Rev. D*, **2006**, *D74*, 072002, we found a conditional probability for detecting photon p_{Tt} and assoc p_{Ta} given parton momentum p_{T} in CMS of hard scattering as:

$$\mathcal{P}(\hat{p}_{T\mathrm{a}}\&\hat{p}_{T\mathrm{t}})\Big|_{\hat{p}_{T}} = rac{\hat{p}_{T\mathrm{t}} + \hat{p}_{T\mathrm{a}}}{\pi\sigma^{2}\sqrt{\hat{p}_{T\mathrm{a}}\hat{p}_{T\mathrm{t}} - \hat{p}_{T}^{2}}}\exp(-rac{(\hat{p}_{T\mathrm{t}} + \hat{p}_{T\mathrm{a}})^{2} - 4\hat{p}_{T}^{2}}{2\sigma^{2}})$$

More details will come soon

10-Jan-23

Momentum imbalance

Figure 4: $\mathcal{P}(\hat{p}_{Tt})\Big|_{\hat{p}_T}$, with $\hat{p}_T = 2.0 \text{ GeV}/c$ 10-Jan-23

10 GeV/c γ-h pairs still not fully in pQCD regime?

courtesy of J. Rak

What about LHC ?

PHENIX measured $\langle p_T \rangle_{pair}$ =3.36±0.09±0.43GeV/c

extrapolation to LHC $\sqrt{\langle k_T^2 \rangle}$ =6.1 GeV/c

Folding with a Fragmentation function

Deviation from dashed lines (the true slopes of D(z)) at low p_T due to the k_T bias.

Unlike the di-hadron correlation it asymptotically converges to the correct value.

□ Knowing that we could unfold the k_T or correct for the bias.

All you need to know, π^0 kinematics $\pi^0 \to 2\gamma$ decay kinematics. E_{π} = 250 MeV munu cos(θ) π0 $(\theta^*=0 \text{ and } \alpha \approx 1)$ one photon takes almost all π^0 momentum and the other photon travels backwards with negative momentum component $p_{\gamma} < m_0/2$.

Trans. From π^0 rest frame RF to LAB

$$egin{aligned} E^{LAB}_{\pm,||} &= \gamma(E^{RF}\pmeta E^{RF}_{||}) &= \gammarac{m_\pi}{2}(1\pmeta\cos heta^*)\ E^{LAB}_{\perp} &= E^{RF}_{\perp} &= rac{m_\pi}{2}\sin heta^*\ p^{LAB}_{\pm,||} &= \gamma(eta E^{RF}\pm p^{RF}_{||}) &= \gammarac{m_\pi}{2}(eta\pm\cos heta^*)\ p^{LAB}_{\perp} &= E^{RF}_{\perp} &= rac{m_\pi}{2}\sin heta^* \end{aligned}$$

Useful definition - asymmetry parameter:

$$lpha = \left| rac{E_+ - E_-}{E_+ + E_-}
ight| \qquad lpha = eta \cos heta^*$$

Decay photon opening angle

Inv. mass of the two dec γ $m_{\pi}^2 = (G_+ + G_-)^2 = 2E_+E_- - 2E_+E_- \cos\theta_L$

$$\cos \theta_L = \frac{\gamma^2 (1 - \alpha^2) - 2}{\gamma^2 (1 - \alpha^2)} = \frac{\gamma^2 (\beta^2 - \alpha^2) - 1}{\gamma^2 (1 - \alpha^2)} = \frac{E_\pi^2 (1 - \alpha^2) - 2m_\pi^2}{E_\pi^2 (1 - \alpha^2)}$$

When $\alpha \rightarrow 0$ and do the Taylor expansion of $\cos^{-1}(1-2/\gamma^2)$ you find

Energy Distribution of Decay photons @ y=0

$$\left. rac{dN_\gamma}{dE_\gamma}
ight|_{y=0} = rac{dN_\gamma}{d heta^*} rac{d heta^*}{dE_\gamma} = rac{2}{p_{T\pi}}$$

$$R_{\gamma,\pi^0}=rac{dN_\gamma/dE_\gamma}{dN_{\pi^0}/dp_{\pi^0}}=rac{2}{n}$$

"Fake" Rate of Direct photons

EMCal energy cut : another source of "direct" photons

$$\frac{dE_{\gamma}}{d\theta^*} = \mp \frac{1}{2} E_{\pi} \beta \sin \theta^*$$

$$rac{dN_\gamma}{dE_\gamma} = rac{dN_\gamma}{d heta^*} rac{d heta^*}{dE_\gamma} = rac{2}{p_{T\pi}}$$

Decay photons energy and asymmetry distributions are in the ideal situation (no detector response) flat.

"Direct" photons from $\pi^0 E_{cut}/E_{\pi} \approx 2\%$ @ $E_{\pi} = 10$ GeV, however, γ/π ratio is also of that order

Conclusion and perspectives

- **u** High pT π^0 suppression at RHIC itself poorly informs us on how exactly the produced medium affects the propagation and the hadronization of high-energy quarks and gluons.
 - Detailed understanding of "unmodified" parton properties in p+p is important
- $\hfill\square$ π^0 h correlation is not sensitive on the determination of fragmentation
 - Trigger bias
 - PHENIX measured $\langle p_T \rangle_{pair}$ =3.36±0.09±0.43GeV/c
 - Extrapolation to LHC $\sqrt{\langle k^2_T \rangle} = 6.1$ GeV/c

□ Need γ-h correlation

- ✤ but we found there are still biases ⊗
- **But** Trigger bias due to the k_T in both h-h and γ -h
 - ★ seems to be under control. ☺☺☺☺☺☺☺☺☺
 - We developed the analytical tools to correct the spectra and resolve the fragmentation function.
- **□** Experimental aspects of direct- *γ* isolation were discussed
 - ***** Isolation cut contribution from π^0
 - Subtraction method under development
- □ Data are being looked at with more strict isolation cuts and subtraction method with combined PHENIX run5+run6 data sets.
- ALICE PHOS full chain analysis with recent updated responses on-going from PYTHIA standalone mode.