Recent Results on Electromagnetic Measurements at RHIC

Hideki Hamagaki

Center for Nuclear Study Graduate School of Science the University of Tokyo

Outline of My Talk

- Photon measurements
 - Medium to High pT region
 - Low pT region
- Single electron measurement
 - R_{AA} in p+p and Au+Au
 - b/(c+b) in p+p collisions
- J/ψ measurement
 - J/ψ in Au + Au collisions
 - χ_c in p+p collisions
- Summary and Outlook
 - Special thanks to the memebers of my group; F. Kajihara, (T. Isobe,) T. Gunji, S.X. Oda, Y. Morino, Y. Yamaguchi

2007/10/20 "Recent Results on Electromagnetic Measurements at RHIC"@HIM2007 Hideki Hamagaki

T. Isobe

Y. Yamagachi

F. Kajihara Y. Morino

T. Gunji S. Oda

Various Photon Sources

- Measurement of direct photons is very HARD, due to severe background from hadron decays
- Hard photons were seen in A-A collisions at RHIC
 - strong suppression of high pT hadrons helps to improve the S/N ratio
 - Thermal photon is difficult
 - a window for QGP thermal photons at pT = 1 ~ 3 GeV/c at RHIC

Internal-Conversion Method

Kroll-Wada Formula

 Measure virtual photons with very low invariant mass

Compton

- yield ratio:
 R(M1:M2)=N(M1:M2)/N(0:30)
- Excess of R(M1:M2) over Dalitz decay -> direct photons.

Comparison with Theoretical Calculations

<u>[</u>]

very interesting, but we have to recall that ...

- pQCD calculation is not reliable at low pT
- Reference data from p+p is not available, because of large systematic error for pT < 5 GeV with the real photon measurement
- => Virtual photon analysis in
 p+p is crucial

Yield Ratio of the Two Mass Bins

For Real Data & Simulation

⁸

Heavy flavor production

- Charm (& bottom) production
 = hard process
 - leading order at low x = "gluon fusion"
 - Ncoll scaling should hold, with known nuclear effects; nuclear shadowing and kT broadening
- A good probe of
 - partonic energy loss
 - thermalization & Flow
- How to measure
 - "exclusive" is favorable, but
 - semi-leptonic decay → measure electrons/muons

Energy Loss of Heavy Quark

1()

 $\propto \frac{1}{\left[\theta^2 + \left(m_0 / E_0\right)^2\right]^2}$

• Dead cone effect: gluon bremsstrahlung is suppressed at forward angles; $\theta < m_Q / E_Q$

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{HEAVY} = \omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{LIGHT} \times \left(1 + \left(\frac{m_Q}{E_Q}\right)^2 \frac{1}{\theta^2}\right)^{-2}$$

Dokshitzer, Khoze, Troyan, JPG 17 (1991) 1602. Dokshitzer and Kharzeev, PLB 519 (2001) 199.

R_{AA} in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

 $R_{\rm AuAu}(N_{\rm part}) = -$

Binary scaling works well for

12

 $^{9.0} dN^{e}_{\underline{\text{AuAu}}} dp_{\mathrm{T}}$

 $\frac{\int_{p_{\rm T}'} \overline{dp_{\rm T}}^{\alpha_{\rm FI}}}{N_{\rm col} \cdot \int_{p_{\rm T}'}^{9.0} \frac{dN_{\rm pp}^{e}}{dp_{\rm T}} dp_{\rm T}}$

$$R_{\rm AuAu}(p_{\rm T}) = \frac{dN_{\rm AuAu}^e/dp_{\rm T}}{N_{\rm col} \cdot dN_{\rm pp}^e/dp_{\rm T}}$$

Suppression level is the almost same as p^0 and h in high p_T region

00-10 %

Radiative Energy Loss

13

 Radiative energy loss with reasonable gluon densities does NOT explain the observed suppression

Collisional Energy Loss

14

 Inclusion of collisional energy loss seems to improve the situation

S. Wicks et al., NPA784:426-442,2007 (nucl-th/0512076)

F. van Hess et al., PRC73 034913 (2006)

Other models

15

- charm and bottom will behave differently, because of mass dependence of dead cone & collisional E-loss.
 - -> fraction of c and b at each pT region is needed.

Electrons from Various Sources; FONLL Prediction

FONLL calculation: Cacciari, Nason, Vogt, PRL95 (2005) 122001

Drell-Yan from: Gavin et al., hep-ph/9502372

Comparison: Armesto, Cacciari, Dainese, Salgado, Wiedemann, hep-ph/0511257

2007/10/20 "Recent Results on Electromagnetic Measurements at RHIC"@HIM2007 Hide

Hideki Hamagaki

16

The Ratio b/(c+b) in p + p Collisions

- $D \rightarrow e K v$; measure e & h (K) coincidence
- How to obtain the ratio

subtraction of like-sign pair from unlike-sign pair 17

$$N_{tag} = N_{unlike} - N_{like}$$

From experimental data:

$$\epsilon_{data} \equiv \frac{N_{tag}}{N_{e(non-photonic)}} = \frac{N_{c \to tag} + N_{b \to tag}}{N_{c \to e} + N_{b \to e}}$$

From PYTHIA simulation:

$$\epsilon_c \equiv \frac{N_{c \to tag}}{N_{c \to e}}, \epsilon_b \equiv \frac{N_{b \to tag}}{N_{b \to e}}$$

$$\frac{N_{b \to e}}{N_{c \to e} + N_{b \to e}} = \frac{\epsilon_c - \epsilon_{data}}{\epsilon_c - \epsilon_b}$$

18 Obtain Tagging Efficiency Real data count count 2500 $\varepsilon_{data} = 0.029 + -0.003(stat)$ 300 Electron pt 2~5GeV/c 2000 +- 0.002(sys) 250 Hadron pt 0.4~5.0GeV/c 200 1500 unlike pair

150 100

50

0 -50

0.5

1.5

2

2.5

3

Invariant mass

like pair

Invariant mass

2007/10/20

1000

500

1.5

2.5

"Recent Results on Electromagnetic Measurements at RHIC"@HIM2007

Hideki Hamadaki

[b->e]/([c->e]+[b->e]) Ratio

- The ratio as a function of electron pt
 - Compared with FONLL: Fixed Order plus Next to Leading Log pQCD calculation
 p+p @\s=200 GeV

How to utilize the b/c ratio

 Collisional dissociation model (by Adil and Vitev) = heavy quarks form mesons inside the medium, and are suppressed by dissociation

Quarkonium

• Idea of J/ψ suppression

- proposed by Matsui and Satz (1986; before experimental results), as a good probe of deconfinement
 - suppression due to Debye screening in the deconfined phase
- History at SPS in Brief
 - suppression in S + A

 \rightarrow turned out to be similar to p + A

anomalous suppression
 observed in Pb + Pb

J/ψ Suppression at RHIC

- Larger suppression at forward angle at RHIC
- Suppression seems to be larger at RHIC, after CNM (cold nuclear matter) effect is corrected

Hideki Hamagaki

Dissociation + Recombination

- Gluon dissociation + recombination
 - Dissociation by thermal gluons supplemented by the regeneration of J/ψ from c-cbar coalescence
 - R. Rapp et al. [EPJC34, 91 (2005)], L. Yan et al. [PRL97,232301 (2006)], R. Thews [NPA783 301(2007)], A.Andronic et al.[nucl-th/0701079], etc
- Magnitude is OK, but the trend cannot be reproduced
 - trend = decrease of R_{AA} starting at Npar ~ 150

Idea of "Thermometer"

V,

- Color Debye Screening
 - Different T_{diss} for different quarkonia.
 - The quarkonium suppression pattern may be used as a QGP thermometer.
- Recent Lattice QCD results
 - J/ψ may survive above T_c

* M. Asakawa, T. Hatsuda; Phys. Rev. Lett. 92 (2004) 012001
* Datta & al, hep-lat/0409147. * Alberico & al, hep-ph/0507084
* Wong, hep-ph/0408020 ← Satz, hep-ph/0512217

state	${\rm J}/\psi(1S)$	$\chi_c(1\mathrm{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Idea of Sequential Melting

- ~40% of J/ ψ come from ψ and χ_c (= feed down)
 - $J/\psi \sim 0.6 J/\psi + 0.3\chi_c + 0.1\psi'$
 - HERA-B exp. PLB561 (2003)
 - J/ ψ suppression pattern may provide information on the melting of ψ'/χ_c .
- J/ψ suppression at SPS may be described by feed down effect
 - claimed by Karsch, Kharzeev & Satz: PLB637(2006)75

2007/10/20 "Recent Results on Electromagnetic Measurements at RHIC"@HIM2007

Hydro+J/ ψ Model

- By T. Gunji, T. Hirano, T. Hatsuda, H.H.
- Incorporate J/ψ , χ_c and ψ' into a hot matter, described by the (3+1)-D relativistic hydrodynamics
 - T. Hirano and Y. Nara, PRL 91, 082301, (2003)
 - T. Hirano and Y. Nara, PRC 69, 034908, (2003)
 - T. Hirano and K. Tsuda, PRC 66, 054905, (2002)
- + J/ ψ , χ_c and ψ [:] traversing through the matter

$$S_{J/\psi}^{tot} = (1 - f_{FD}) \times S_{J/\psi} + f_{FD} \times S_{\chi,\psi'}$$
$$S_{J/\psi} \left(\vec{x}_{J/\psi}(\tau) \right) = \exp \left[-\int_{\tau_0}^{\tau} \Gamma_{dis} \left(T(\vec{x}_{J/\psi}(\tau')) \right) d\tau' \right]$$
$$\Gamma_{dis}(T) = \infty(T > T_{J/\psi}), \ 0(T < T_{J/\psi})$$

Model Calculations

- Good fit to the experimental $S_{J/\psi}^{tot}$ (= R_{AA}/CNM).
 - Min. χ^2 at $(T_{J/\psi}, T_{\chi}, f_{FD})$ = (2.02 T_c , 1.22 T_c , 30%)

- Sensitivity to $T_{J/\psi}$
 - $T_{J/\psi}/T_c = 1.9, 1.96, 2.02, 2.08, 2.14$
 - $T_c = 1.22T_c$ and $f_{FD} = 30\%$

New Results

• $\Gamma_{dis}(T < T_{J/\psi}) = 0$ -> Include dissociation by thermal gluons

- $\Gamma_{dis}(T < T_{J/\psi}) = \alpha(T/T_C-1)^2$
 - NLO calculation by Y. Park, K-L. Kim, T. Song, S.H. Lee and C-Y. Wong, arXiv:0704.3770 [hep-ph].
- Large α value (α > 0.2
 GeV) is not favored.

Charmonium system

Particle	Mass	Width	Mass difference from	$BR(\chi_c \to J/\psi\gamma)$
	$({ m MeV}/c^2)$	(MeV/c^2)	$J/\psi~({ m MeV}/c^2)$	
$J/\psi(1S)$	3096.916 ± 0.011	0.0934 ± 0.0021	_	—
$\chi_{c0}(1P)$	3414.76 ± 0.35	10.4 ± 0.7	318	$1.30 \pm 0.11\%$
$\chi_{c1}(1P)$	3510.66 ± 0.07	0.89 ± 0.05	414	$35.6\pm1.9\%$
$\chi_{c2}(1P)$	3556.20 ± 0.09	2.06 ± 0.12	459	$20.2\pm1.0\%$

2007/10/20 "Recent Results on Electromagnetic Measurements at RHIC"@HIM2007

Hideki Hamagaki

30

Theoretical Model Predictions

Feasibility Study Using Simulation

Black : Foreground Blue : Background Red: Foreground-background Green : Normalization regions

Hideki Hamagaki

Data Analysis is in Progress

• The fraction of J/ψ from χ_c feed down ($R\chi_c$) seems to be small.

Summary

- Direct photons
 - A new preliminary result; photons at low pT in p-p collisions
- Single electrons
 - large suppression at high pT in Au-Au central collisions
 - gluon bremsstrahlung is not enough
 - A new preliminary result; b/(c+b) in p-p collisions
- J/ ψ
 - a sequential melting model seems quite reasonable to explain J/ψ suppression Au-Au
 - Analysis of feed down from χ_c is in progress

Outlook

- Not covered in this talk
 - high pT photons
 - large enhancement of low-mass electron pair
- In near future, new findings are expected with higher statistics data for p-p, d-Au, Au-Au (& Cu-Cu) collisions.
- New results soon to come from LHC should provide a different viewpoint to the RHIC results.