

Single muon elliptic flow for Au+Au collisions at 200GeV in the PHENIX experiment at RHIC

Overview

- 1. Heavy Ion Collision at RHIC
- 3. Motivation
- 4. Kind of Flow
- 5. How to measure
- 6. Results

Heavy Ion Collision at RHIC

Relativistic Heavy Ion Collider, Brookhaven National Laboratory(BNL), NewYork

HIM
10/20/2007

10/20/2007

Motivation

Yonsei University

ONSE

Flow Measure Methods

- Reaction plane Method (Standard Method)
 Need Reaction plane
- 2) Two particle correlation method- Do not need the reaction plane
- 3) Cumulant Method
 (Multi-particle correlation method)Do not need the reaction plane
- 4) Mixed Method(Cumulant Method + Reaction plane method)- need the reaction plane

$$v_n = \left\langle e^{in(\phi - \Psi_r)} \right\rangle$$
$$= \left\langle \cos n(\phi - \Psi_r) \right\rangle$$

$$C(\Delta\phi) \equiv \frac{N_{pairs}(\Delta\phi)}{N_{mixed}(\Delta\phi)}$$

$$\langle \exp[in(\phi_1 + \phi_2 - \phi_3 - \phi_4)] \rangle$$

$$= \langle e^{in(\phi_1 - \phi_3)} \rangle \langle e^{in(\phi_2 - \phi_4)} \rangle + \langle e^{in(\phi_1 - \phi_4)} \rangle \langle e^{in(\phi_2 - \phi_3)} \rangle$$

$$+ \langle \langle \exp[in(\phi_1 + \phi_2 - \phi_3 - \phi_4)] \rangle \rangle$$

PHENIX Detectors

64 Channel for both Arms $3.1 < |\eta| < 4.0$ **Reaction plane**

 $1.2 < \eta < 2.2$ $\varphi \sim 2\pi$

Single Muon Elliptic Flow

PHENIX Detectors

3 Stations for each Arm Muon Magnet

HIM 10/20/2007

Reaction plane method

HIM 10/20/2007

What is "Inclusive single muons"?

Combinatorial Background

Real and combinatorial background tracks

Almost combinatorial background tracks

Phi angle difference Station 1 – Station3

Swap the half octant in the PHENIX Muon reconstruct code

20Million events were reconstructed as swap data.

Two primary background rejection cuts

HIM
10/20/2007

IhnJea Choi Yonsei University

Swap/Real Ratios

w/ old cut

w/ new cut

Blue points -> Real data / Red points -> Swap data We can reject the background tracks very well

HIM 10/20/2007

v2(pt) simulation in the Muon Tracker

10,000 pions+, 10,000 kaons+, 100MeV/c pT bin Single track simulation

v2(pt) similar to PHENIX Central **Arm measurements**

v2(pt) for a linear functions

Above pT 0.7GeV/c show good agreement with reconstructed MC

Results : v2(pt) @ Centrality 10-30%

v2(pt) at centrality 10-30% (Blue points) w/ BRAHMS charged hadrons data Pt dependent elliptic flow for charged hadrons – BRAHMS data. For the 15% to 25%

Results : v2(pt) @ Centrality 30-60%

Results : Minimum Bias v2(pt)

Blue and red points are the Central Arm v2(pt) for pions and kaons Black points are the Minimum Bias Elliptic flow at forward rapidity(Inclusive)

HIM
10/20/2007

Summary

The Combinatorial Background track was big concern at single muon analysis in Au+Au collisions. We can now reject those tracks very well and do estimate the amount but we can lose the statistics.

The results have a good agreement with PHENIX Central Arm results and BRAHMS results.

The inclusive results showed here are just basic step to measure open charm Elliptic flow from the single muon particle in the Muon Tracker.

- We have produced all run4 Au+Au single muon data just a month ago.

Thank You

Cuts

Event Selection Cuts

-30 cm < Collision Vertex < +30 cmBBC reaction plane angle > -10 (radian) Minimum Bias Trigger(BBCN $\ge 2 \& BBCS \ge 2$)

Track quality cuts

1.2 < |Eta| < 2.0DG0<20, (North Arm <15) DDG0<9 Muon ID Gap = 4 (LastGap) $\chi^2 / DOF < 20$ Muon traks # hits = 16 $P(momentum) \times \delta\theta < 0.2$ Important cuts to reject fake tracks

- The source of systematic error comes mainly from the fake tracks. So by comparing v2 from the mutr_nhits(14,15) which have more b.g tracks than v2 from the mutr_nhits(16), we can estimate the systematic difference. -> next pages
- The other source of systematic error comes from the reaction plane measurement in the BBC detectors, we estimate this effect less then 5%.

Sys. Error

South Arm

Centrality 10-30%

North Arm

Sys. Error

South Arm

Centrality 30-60%

with mutr_nhits=14,15

$$v_2(nhits = 14,15) - v_2(nhits = 16)$$

 $v_2(nhits = 16)$

PH^{*}ENIX

Reaction Plane Resolution

Reaction Plane Resolution v.s. Centrality

$$\sigma_{resolution} = \sqrt{2 < \cos(2 \times (\Psi_N - \Psi_S)) >}$$

$\operatorname{centrality}$	Event plane resolution
0 - 5 %	0.2005 ± 0.0006
5 - 10 %	0.2952 ± 0.0004
10 - 15 %	0.3657 ± 0.0003
15 - $20~%$	0.4016 ± 0.0003
20 - $30~%$	0.4114 ± 0.0002
30 - 40 %	0.3780 ± 0.0002
40 - $50~%$	0.3093 ± 0.0003
50 - $60~%$	0.2208 ± 0.0004
60 - 70 %	0.1398 ± 0.0006
70 - 80 %	0.079 ± 0.001
80 - $93~%$	0.040 ± 0.002

Au+Au Reaction Plane Resolutions for each Centrality bins

Reaction plane resolution

$$\left\langle \cos n(\Psi_n^a - \Psi_n^b) \right\rangle = \left\langle \cos n(\Psi_n^a - \Psi_r) - n(\Psi_n^b - \Psi_r) \right\rangle \qquad \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle = \sqrt{\left\langle \cos n(\Psi_n^a - \Psi_n^b) \right\rangle}$$

$$= \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle \left\langle \cos n(\Psi_n^b - \Psi_r) \right\rangle \qquad \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle = C \times \left\langle \cos n(\Psi_n^a - \Psi_n) \right\rangle$$

$$= \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle \left\langle \sin n(\Psi_n^b - \Psi_r) \right\rangle \qquad = C \times \sqrt{\left\langle \cos n(\Psi_n^a - \Psi_n^b) \right\rangle}$$

$$= \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle \left\langle \cos n(\Psi_n^b - \Psi_r) \right\rangle$$

$$\approx \left\langle \cos n(\Psi_n^a - \Psi_r) \right\rangle^2$$

YONSEI UNIVERSITY

Elliptic Flow

