Search of QCD phase transitions at finite density with the canonical approach

Masayuki Wakayama

CENuM, Korea University Pukyong National University

> Heavy Ion Meeting (HIM) 2019-10 @ APCTP, Pohang, Korea (2019.10.19)

Collaborations

- A. Nakamura (Far Eastern Federal Univ.)
- A. V. Molochkov (Far Eastern Federal Univ.)
- V. G. Bornyakov (NRC Kurchatov Inst.)
- H. lida (Univ. of Tokyo)
- V. A. Goy (Far Eastern Federal Univ.)
- D. L. Boyda (Far Eastern Federal Univ.)
- V. I. Zakharov (NRC Kurchatov Inst.)
- A. Hosaka (RCNP, Osaka Univ.)
- Seung-il Nam (Pukyong National Univ.)

<u>Contents</u>

1. Introduction

Motivation, Monte Carlo Method, Sign problem

- **2. Canonical Approach** basic idea, history, number density formulation
- 3. Lee-Yang zeros (LYZs)
- 4. Results of LYZs in lattice QCD
- 5. Results of LYZs in the NJL model
- 6. Summary & Future work

QCD Phase diagram (Prediction)

T (Temperature)

Where are the critical point and the phase transition line?

Predicted critical points

Where are the critical point and the phase transition line? Lattice QCD at finite density: Existence of the sign problem

Monte Carlo Method

Grand canonical partition function $Z_{GC}(\mu_q) = \int \mathcal{D}U \left[\det D(\mu_q)\right]^{N_f} e^{-S_G}$

7 7

 S_G : Gauge action $D(\mu_q)$: Fermion matrix μ_q : Quark chemical potential N_f : # of flavors

Expectation value of an arbitrary operator

$$\langle \mathcal{O} \rangle_{\mu_q} = \frac{1}{Z_{GC}(\mu_q)} \int \mathcal{D}U \left[\det D(\mu_q)\right]^{N_f} e^{-S_G} \mathcal{O}\left[U\right]$$

Degree of freedom for Gauge field "U": (lattice size)x4x8

very large number integrations => impossible!

Monte Carlo Method

$$\mathcal{O}_{\mu_q} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[U_i]$$
 with Probability: $[\det D(\mu_q)]^{N_f} e^{-S_G}$ (importance sampling)

Sign Problem $D(\mu_q)$: Fermion matrix

S_G : Gauge action N_f : # of flavors

Monte Carlo Method

 $\langle \mathcal{O} \rangle_{\mu_q} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[U_i]$ with Probability: $[\det D(\mu_q)]^{N_f} e^{-S_G}$

<u> </u>			
Chemical potential	$\det D(\mu_q)$	Monte Carlo Method	
$\mu_q = 0$	Real value	0	
$\mu_q \neq 0$	Complex value	🗙 (Sign Problem)	

$$D(\mu_q) = D_{\nu} \gamma_{\nu} + m + \mu_q \gamma_0$$

$$D(\mu_q)^{\dagger} = -D_{\nu} \gamma_{\nu} + m + \mu_q^* \gamma_0 = \gamma_5 D(-\mu_q^*) \gamma_5$$

$$[\det D(\mu_q)]^* = \det \left[D(\mu_q)^{\dagger} \right] = \det \left[\gamma_5 D(-\mu_q^*) \gamma_5 \right] = \det D(-\mu_q^*)$$

Sign Problem

S_G : Gauge action $D(\mu_q)$: Fermion matrix N_f : # of flavors

Monte Carlo Method

(importance sampling)

$$\langle \mathcal{O} \rangle_{\mu_q} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O} [U_i]$$
 with Probability: $[\det D(\mu_q)]^{N_f} e^{-S_G}$

	Chemical potential	$\det D(\mu_q)$	Monte Carlo Method
	$\mu_q = 0$	Real value	0
	$\mu_q \neq 0$	Complex value	🗙 (Sign Problem)
^p ure mag.	$\mu_q = i\mu_{qI}$	Real value	0

$$D(\mu_q) = D_{\nu} \gamma_{\nu} + m + \mu_q \gamma_0$$

$$D(\mu_q)^{\dagger} = -D_{\nu} \gamma_{\nu} + m + \mu_q^* \gamma_0 = \gamma_5 D(-\mu_q^*) \gamma_5$$

$$[\det D(\mu_q)]^* = \det \left[D(\mu_q)^{\dagger} \right] = \det \left[\gamma_5 D(-\mu_q^*) \gamma_5 \right] = \det D(-\mu_q^*)$$

Canonical Approach

Fugacity expansion

Grand Canonical partition function

$$\frac{Z_{\text{GC}}(\mu_q, T, V)}{Z_{\text{GC}}(\mu_q, T, V)} = \operatorname{Tr} \left(e^{-(\hat{H} - \mu_q \hat{N})/T} \right) \\
= \sum_n \langle n | e^{-(\hat{H} - \mu_q \hat{N})/T} | n \rangle \\
= \sum_n \langle n | e^{-\hat{H}/T} | n \rangle e^{n\mu_q/T} \\
= \sum_n \frac{Z(n, T, V)\xi^n}{\text{Canonical partition function}}$$

Canonical Approach

Fugacity expansion

<u>History</u>

Basic Idea of Canonical Approach

A. Hasenfrantz, D. Toussaint, Nucl. Phys. B371 (1992)

X Numerical instability of (discrete) Fourier transformation

Sign Problem $? \Rightarrow$ No, this is caused by cancelation

of significant digits !

R.Fukuda, A.Nakamura, S.Oka, PRD93 (2016)

Multiple-precision arithmetic

1.23456789012345666666666

<u>History</u>

Basic Idea of Canonical Approach

 \bigcirc N_{digit}=0016

 \times N_{digit}=5000

50 100 150 200 250 300 350 400 450 500

n

A. Hasenfrantz, D. Toussaint, Nucl. Phys. B371 (1992)

X Numerical instability of (discrete) Fourier transformation

Sign Problem $? \Rightarrow$ No, this is caused by cancelation

of significant digits !

R.Fukuda, A.Nakamura, S.Oka, PRD93 (2016)

In double-precision arithmetic, cancelation of significant digits occurs at high n region.

In multiple-precision arithmetic, we can evaluate Zn up to high n region with accuracy.

M. Wakayama

 $\beta = 1.80$ T/T_c=0.93

1

 $\mathbf{10}^{-50}$

 10^{-100}

 10^{-150}

 10^{-200}

 10^{-250}

Z

Number density formulation

How to calculate $Z_{GC}(\mu_q = i\mu_{qI}, T, V)$

V.G. Bornyakov et al., PRD95, 094506 (2017)

 $\theta = \frac{\mu_{qI}}{T}$

Quark number density

$$\frac{n_q}{T^3} = \frac{1}{VT^2} \frac{\partial}{\partial \mu_q} \ln Z_{\rm GC}$$
$$= \frac{1}{VT^3} \frac{1}{Z_{\rm GC}} \int \mathcal{D}U \,\det D(\mu_q) \,e^{-S_G} \,\mathrm{Tr} \left[D^{-1} \frac{\partial D}{\partial (\mu_q/T)} \right]$$

 $n_q = i n_{qI}$

Approximated by a Fourier series.

$$\frac{n_{qI}}{T^3}(\theta) \sim \sum_{k=1}^{N_{\rm sin}} f_k \sin(k\theta)$$

<u>Outline</u>

If we get Z_n for all n, we can search at ANY density!

<u>Outline</u>

In numerical calculations, n is finite.

Zeros of Z_{GC} called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

<u>Outline</u>

M. Wakayama

Is the extrapolation true?

22/32

Susceptibility in the NJL model

Phase transition of the NJL model

Two-flavor NJL G=5.5GeV⁻² m_q =5.5MeV Λ =631MeV

M. Wakayama

25/32

Number density in the NJL model

Number density formulation (V. Bornyakov et al., PRD95(2017))

 $\frac{n_q}{T^3} = \frac{1}{VT^2} \frac{\partial}{\partial \mu_q} \ln Z_{\rm GC} \sim \sum_{k=1}^{N_{\rm sin}} f_k \sin(k\theta)$ We fit the number density as it was done in the lattice simulations.

Under the phase transition density, exact n_B calculated at the real μ_B region can be reconstructed from the results of the canonical approach of $N_{max} \ge 200$.

As N_{max} increases, edges of LYZs approach to the real axis. But we find that for the finite Nsin, edges of LYZs pass over the expected CP.

Schematic flows of the edges of LYZs

We have succeeded in subtracting a term associated with finite N_{sin} effect from the fitted function. The resulting curve represented the dotted curve nicely reproduces the expected critical point (CP) in the NJL model.

This extrapolation procedure works well to obtain the expected phase transition points (PTP).

This extrapolation procedure does not work well to obtain the expected pseudo phase transition points (PPTP), which is consistent with the disappearance of PTP.

<u>Summary</u>

- We studied Lee-Yang zeros for Z_n obtained from the canonical approach in lattice QCD and the NJL model.
- The phase transition points can be roughly estimated from lattice QCD.
- We found the reasonable extrapolation procedure of the edge of LYZs in the NJL model.

Future work

Other Example: Polyakov-loop-extended NJL model -- It has the Roberge-Weiss symmetry.

Realistic lattice QCD calculations and determine the QCD phase transitions