

Light a fire in Cold Nuclear Matters

Sanghoon Lim University of Colorado Boulder

ANTICANCER BLOCKBUSTER?

RISE AND FALL OF THE SLIDE RULE

SCIENTIFIC AMERICAN

Bringing DNA Computers to Life

MAY 2006 WWW.SCIAM.COM

Quark Soup

PHYSICISTS RE-CREATE THE LIQUID STUFF OF THE EARLIEST UNIVERSE

Stopping Alzheimer's

Birth of the Amazon

Future Giant Telescopes

COPYRIGHT 2006 SCIENTIFICA MERICAN, INC.

EVIDENCE FOR A DENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

Recipe for Quark Soup

Excellent recipe for Quark-Gluon Plasma !

Recipe for Quark Soup

How about this new recipe ?

Control initial geometry

Control initial geometry

Larger <ε₃> in ³He+Au

Nature Physics 15, 214 (2019)

0.1

0.0

nkta

UK AU

HexAu

nk+a

0+4n

Hexau !

Control initial geometry

- Smaller $< \varepsilon_2 >$ in p+Au
- Larger $< \varepsilon_3 >$ in ³He+Au

Smaller v₂ in p+Au
Larger v₃ in ³He+Au

Nature Physics 15, 214 (2019)

Comparison with models

Nature Physics 15, 214 (2019)

- Hydrodynamic models can reproduce the data quite well
- Initial state correlation model give the right v₂ system ordering, but a poor overall description

Comparison with models

Nature Physics 15, 214 (2019)

- Hydrodynamic models can reproduce the data quite well
- Initial state correlation model give the right v₂ system ordering, but a poor overall description

$$\frac{dN}{d^2k} [\text{GeV}^{-2}] \stackrel{!}{=} f(k') [\text{fm}^2]$$

Effectively, all results were off by in momenta factor of $\hbar c$

Recent reports from MSTV

What does this mean

Effectively, nuclei were *zoomed in on* by incorrectly considering only small momenta

With corrections to momenta factors (including reference bin), CGC appears to be unable to describe data systematics, i.e.

 $v_2(p \ 0-5\%) > v_2(d \ 0-5\%) > v_2(^3He \ 0-5\%)$

- The effect from CGC model can be studied by comparing another model including other phenomenological pieces (*IP-Jazma*, arXiv:1808.01276)
 - MC Glauber for nucleons
 - IP-Sat for Q_s
 - Multiplication of gluon densities in two nuclei for energy density

Quite consistent initial geometry

Can you see initial correlation? Flat-Flat in IP-Glasma w/ Q,~I GeV

Imagine new geometry!

How about ⁴He?

Even with additional nucleon in ⁴He, the size is more compact than ³He
 – RMS for nucleon central coordinates: 1.46 fm for ⁴He and 1.57 fm for ³He

Collectivity in ⁴He+Au 200 GeV

- v_n relative to initial geometry $(v_n/\langle \epsilon_n \rangle)$ in ⁴He+Au is larger
- More compact ⁴He induced hot spot leads to larger translation of geometry to v_n

New collision system at the LHC

Collectivity in p/O+O 7 TeV

• Similar $v_n / \langle \varepsilon_n \rangle$ between p + Pb and O + O and smaller in p + O

α-clustering in ⁹Be+Au

In collisions between ^{7,9}Be and large nucleus, a significant deformation of ellipticity with ⁹Be because of additional neutron

Collective behaviors have been observed everywhere!

Can we learn more by searching for particles not participating into the collective behavior?

High p_T in small systems

- One of explanation of high $p_T v_2$ in heavy-ion is differential energy loss
- Interesting study of high $p_T v_2$ in small systems where no clear evidence of energy loss has been observed yet

Heavier quarks

Phys. Rev. Lett. 121, 082301 (2018)

- Strong flow for charm quarks in p+Pb and Pb+Pb
- How about bottom quarks?

Many recipes for Quark-Gluon Soup!

Lots of efforts are on going to find out key ingredients!

BACKUP