Transverse spin physics in p+p and p+A collisions using the PHENIX muon spectrometer

> Jeongsu Bok (Inha Univ) May 24th 2019 Heavy Ion Meeting

How did the proton get its spin

- Protons are one of the three particles that make up atoms, the building blocks of the universe. A proton's spin is one of its most basic properties.
- used to be an easy college assignment. However, the "right" response was disproven by experiments that turned the field upside-down.
 - In 1980's EMC at CERN : nothing from quark → recent experiments suggest 25~30%
 - → "Proton Spin Puzzle"

Spin structure of the proton (transverse)

- Studying the transverse spin structure of the proton provides an opportunity to understand the 3-D structure of the proton.
- A tool : Transverse Single Spin Asymmetry (A_N)
 - polarized proton scattering on an unpolarized proton or nucleus.
 - $A_{\rm N}$ describes the azimuthal-angular dependence of particle production relative to the transverse-spin direction of the proton
 - measured in fixed target experiments and ignored for a couple decades because it was assumed that they came incalculable soft QCD interactions.

$$A_N = \frac{\sigma_L^{\uparrow} - \sigma_R^{\uparrow}}{\sigma_L^{\uparrow} + \sigma_R^{\uparrow}}$$

Transverse Single Spin Asymmetry (A_N)

- Small asymmetry is expected at high energies
- Over 40 years, Large A_N in single hadron production consistently observed up to RHIC energies, well into the perturbative regime of QCD
- Their origin remains poorly understood. → Another long-standing puzzle

Understanding of TSSA

• Early Attempt

- smaller A_N at high energies
- Kane, Pumplin, Repko, PRL 41, 1689–1692 (1978)

$$A_N \propto \frac{m_q}{\sqrt{s}}$$
 $A_N \sim O(10^{-4})$

- Current understanding
 - TMD factorization
 - For two scale observables : $\mathbf{Q} \gg \mathbf{p}_{\mathsf{T}} \ge \boldsymbol{\lambda}_{\mathsf{QCD}}$
 - DY, W, Z, Hadron in jet, ...
 - Twist-3 Collinear factorization
 - For one scale observables : Q, $p_T \ge \lambda_{QCD}$
 - π , γ , jet, Heavy Flavor, ...

Origin of A_N

(i) Sivers mechanism: correlation between proton spin & parton k_T

(ii) Collins mechanism: Transversity × spin-dep fragmentation

Collinear Twist-3: quark-gluon/gluon-gluon correlation Expectation: at large p_T , $A_N \sim 1/Q \sim 1/p_T$

Relativistic Heavy Ion Collider at BNL

Polarized p+p(A) collision at RHIC

Polarized p+p(A) collision at RHIC

Two Muon spectrometers called South arm (-2.2<η<-1.2) and North arm (1.2<η<2.4)

installed before Run-11

3 Stations (3/3/2 gaps in each station, 2 planes per gap)

5 Gaps (Each gap consists of X/Y/absorber planes)

Open Heavy Flavor A_N

- Open Heavy flavor A_N
 - Dominated by gluon-gluon interaction
 - Clean probe for gluon Sivers effect – sensitive to the trigluon correlation function in the twist-3 collinear factorization framework.
- Probing HF in PHENIX
 - PHENIX muon spectometer (1.2<|η|<2.4)
 - D $\rightarrow \mu \pm$ channel

Open Heavy Flavor in Muon Arm

- Charged hadrons stop at MUID gap2,3
- Muons reach to the last gap of MUID(gap4)

Open Heavy Flavor in Muon Arm

- background estimation using hadron cocktail
 - initial spectra from data + full GEANT simulation

Open Heavy Flavor A_N – Analysis Detail

- Background A_N : pure charged hadron sample at MUID Gap3 tracks
- Inclusive A_N : MUID Gap4 tracks include
 - Signal : Heavy Flavor $\rightarrow \mu \pm$
 - Background
 - $\pi \pm K \pm (\rightarrow \mu \pm)$: measured with Gap3 tracks
 - J/ ψ : using previous data (Phys. Rev. D 85, 092004 (2012)), systematic uncertainty

Open Heavy Flavor A_N - Results

- Results for p_T bins
 - dashed, dotted lines : two models in twist-3 tri-gluon correlation function
- Phys. Rev. D 95, 112001 (2017)

Open Heavy Flavor A_N - Results

- Results for x_F bins
- dashed, dotted lines : two models in twist-3 tri-gluon correlation function
- consistent with theory within uncertainty
- Phys. Rev. D 95, 112001 (2017)

Open Heavy Flavor A_N - Results

- Sensitive to the tri-gluon correlation function in twist-3 collinear factorization framework
- First measurement of open heavy flavor A_N at RHIC.
- Phys. Rev. D 95, 112001 (2017)
- Future study for Gluon Sivers-like effect
 - PHENIX 2015 data
 - Future projects EIC, fixed target at LHC

Charged Hadron A_N – RHIC Data

- Opposite sign in π +, π -
- Same sign in K+,K- at BRAHMS (200GeV Preliminary)

• positive A_N in π^0

Charged Hadron in Muon Arm

- Stopped hadron at MUID Gap2,3 with p_z>~3GeV/c
- $\pi \pm K \pm \text{mixture}$

Charged Hadron A_N in p+p

- A_N of (survived) $\pi \pm K \pm \text{mixture}$
- $p+p \rightarrow h(+)+X$ at $x_F>0$ shows positive A_N while h(-) shows small A_N
- A_N increases as x_F increases for positively charged hadron at $x_F>0$

polarized p+A collisions at RHIC

this can estimate Q_{sn}

A unique capability of RHIC

Inclusive hadron A_N in polarized p+A

- The first polarized p+A collision at RHIC 2015
 - Novel opportunities to study nuclear effects on parton dynamics

- Inclusive hadron A_N at forward rapidity in polarized p+A helps us to understand
 - Underlying mechanisms of A_N → different mechanism have different A-dependence
 - Hybrid approach (Twist-3 in polarized p, CGC in A)
 - Yoshitaka Hattaa, et al, Phys. Rev. D 94, 054013 (2016), Phys. Rev. D 95, 014008 (2017)
 - unique opportunities to study low-x gluon and gluon saturation signatures
 - A-dependence of A_N is sensitive to Qs
 - PhysRevD.84.034019, PhysRevD.86.034028

Positively charged hadron A_N in p+p, p+A

- cosine modulations of A_N for positively charged hadron at 0.1<x_F<0.2
- clear modulation in p+p, weaker one in p+Al, disappears in p+Au

Positively charged hadron A_N in p+p, p+Au

- A_N of (survived) $\pi \pm K \pm mixture$.
- p+Au \rightarrow h(+)+X shows clear suppression of A_N at x_F>0.1

- Nuclear dependence of A_N for positively charged hadron at 0.1<x_F<0.2
 - Fit function is to quantify the Adependence, x-axis is A^(1/3)
 - Bottom panel is χ^2 for wide range of power parameter α
 - Favors A-dependence
 - α =1 corresponds to A^(1/3)
 - α =0 corresponds to A⁽⁰⁾ (Aindependence)
- Submitted to PRL, arXiv:1903.07422

- Avg.N_{coll} dependence of A_N for positively charged hadron at 0.1<x_F<0.2
 - x-axis is averaged-N_{coll}, related to the path length in a nucleus in p+A collisions
 - Bottom panel is χ^2 for wide range of power parameter β
 - Favors N_{coll}-dependence
- Submitted to PRL, arXiv:1903.07422

- \bullet First result of Nuclear dependence of $A_{\rm N}$ in inclusive charged hadron production
- \bullet Shows clear A-dependence and N_{coll} dependence
- \rightarrow A-dependent term could be the dominant source for A_N in inclusive hadron production

- Hybrid approach in recent theory papers
 - Twist-3 framework for the polarized-proton side and the CGC framework for the target-nucleus side
 - A-dependence of the TSSA arises from the saturation scale Q_{s} , where $Q^2_{\ sA} \propto A^{1/3}$ for the target nucleus

• A_N in p+A is thought to be

- From twist-3 correlation function : independent of A for $p_T \gg \Lambda_{QCD}$
- From twist-3 fragmentation function : A-independent or $A^{1/3}$ -dependent for $Q_s \gg p_T \gg \Lambda_{QCD}$
- Unexpected A-dependence in high p_T
 - Recent paper Phys.Rev. D99 (2019), 094012 (arXiv:1811.10589) PHENIX collaboration found a striking nuclear suppression $A_N \propto A^{-1/3}$
 - Making theorists confused. Need more experiment.

Summary

- Studying spin in physics has led to a lot of surprises
- Transverse single-spin asymmetries (TSSAs) of proton-proton collisions have a long history of revealing the richness of QCD.
- TSSA measurements using PHENIX muon spectrometers
- (1) Open heavy flavor A_N in p+p
 - First measurement of open heavy flavor A_N at RHIC.
 - Sensitive to the tri-gluon correlation function in twist-3 collinear factorization framework
- (2) Charged hadron A_N in p+p, p+A
 - unique opportunities to study low-x gluon and gluon saturation signatures
 - The h(+) result shows striking A-dependence and N_{coll} dependence
 - A-dependent term could be the dominant source of A_N in p+p
- This topic has been studied in many experiments and will be studied in future experiments,
 - Current : PHENIX, STAR, JLAB, COMPASS, Fermilab ...
 - STAR upgrade, EIC (RHIC, JLAB), LHC target experiment if possible ...

backup slides

Mechanisms for A _N		
	Transverse-momentum- dependent (TMD) Factorization	Collinear twist-3 Factorization
Applicable	works at $Q \gg p_T \ge \lambda_{QCD}$ needs 2 scales (Q^2 and p_T)	works at $Q, p_T \gg \lambda_{QCD}$ needs 1 scale (Q^2 or p_T)
<i>p+p</i> observables	DY, W, Z, Hadron in jet	π,γ , jet, Heavy Flavor,
Initial state	Sivers mechanism – proton spin and quark $k_{\rm T}$ correlation	Twist-3 multi-parton correlation functions
	related through $T_F^q(x,x) = -\int d^2 \mathbf{p}_{\perp}^{-1}$	$rac{\mathbf{p}_{\perp}^2}{M} f_{1T}^{\perp q}(x,\mathbf{p}_{\perp}^2) ig _{\mathrm{SIDIS}}$
Final state	Collins mechanism – proton spin and quark spin correlation, quark spin and hadron k_T correlation	Twist-3 fragmentation functions
	related through $\hat{H}^{h/q}(z) = z^2 \int d^2 \vec{k}_{\perp}$	$\frac{\vec{k}_{\perp}^2}{2M_h^2}H_1^{\perp h/q}(z,z^2\vec{k}_{\perp}^2)$

Comparison with other result

- small to no A-dependence in forward π^0 at STAR
- larger x_F

charged hadron at BRAHMS

- 62.4 GeV
- Phys. Rev. Lett. 101, 042001 (2008).

Twist-3 collinear factorization

