Investigating jet modifications using di-hadron correlations in Pb-Pb collisions with ALICE

May. 24th 2019 Heavy Ion Meeting Hyeonjoong Kim

- Hard scattering between partons produces a shower of softer partons having similar direction
- Jets interact with the medium and induces energy loss

 In a vacuum, the showering process can be simplified as ons

- In a vacuum, the showering process can be simplified as ons
 - If we add a medium in the parton shower process...

Propagation of the jets are modified

Parton shower In a vacuum, the showering process can be simplified as Hadrons If we add a medium Hard Scattering Non-perturbative in the parton shower Hadronization process... Parton shower **Propagation of the** jets are modified Hadrons How do we observe Hard Scattering Additional the modifications? Non-perturbative fragmentation Medium Hadronization Fri. 5/24/2019 **Heavy Ion Meeting**

Jet Suppression

Jets from Angular Correlation

- Can provide additional information on jet properties
- *I*_{AA} measurement in ALICE
 - Modification of a fragmentation function
 - Modification of a quark/gluon jet ratio
 - Bias on the parton $p_{\rm T}$ distribution after energy loss due to the trigger selection

Heavy Ion Meeting

 $I_{AA} = \frac{Y_{PbPb}}{Y_{pp}}$ where Y is the

per-trigger yield of jets

Large Hadron Collider

- Located at border of France and Switzerland
- Accelerator ring of 27km circumference
- pp collision's maximum energy $\sqrt{s_{NN}} = 13$ TeV Pb—Pb collision with $\sqrt{s_{NN}} = 5.02$ TeV
- 4 collision points
 - ALICE, ATLAS, CMS, LHCb

AD Antionator Decelerator CTF-3 Clic Test Facility CNCS Cem Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice Fri. 5/24/2019 EIR Low Energy Ion Ring LINAC LINear ACcelerator On-ToF Neutrons Time Of Flight Heavy Ion Meeting

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

A Large Ion Collider Experiment

- Dedicated to study heavy-ion physics
- Tracking
 - ITS and TPC : Specialized in low p_T measurements and particle identification Full azimuthal acceptance with $|\eta| < 0.9$
- Trigger detector
 - VZERO : Also used as an event plane and centrality estimator

Fri. 5/24/2019

Heavy Ion Meeting

Two particle correlation

• Another useful tool to measure jet properties

Basic quantities $\Delta \varphi = \varphi_{\text{trig}} - \varphi_{\text{assoc}}$ $\Delta \eta = \eta_{\text{trig}} - \eta_{\text{assoc}}$

- Near side jet : Single jet properties
 - Jet fragmentation
- Away side jet : Di-jet properties
 - Acoplanarity + momentum imbalance due to $k_{\rm T}$
 - Additional medium induced modification

I_{AA} Analysis Method

- Construct same and mixed event distributions
- . Correct the experimental effects
 - Tracking efficiency
 - Resonance decays
- . Background level is estimated by fit
- 4. Extract the yield $1/N_{trig} dN/d\Delta \eta$ in jet peak region
- 5. Evaluate the ratio between Pb-Pb and pp $I_{AA} = Y^{Pb-Pb}/Y^{pp}$

Jet shape modification and I_{AA}

Cartoon showing possible scenarios of jet shape modification broadening unmodified/scaled narrowing A-Areference $|\Delta\eta|$ $|\Delta\eta|$ $|\Delta\eta|$

• Trend of I_{AA} shows a possible onset of jet shape modification in $\Delta \eta$ (narrowing), in most central collisions with $8 < p_{T,trig} < 15 \&$ $4 < p_{T,asso} < 8 (GeV/c)$

 Cartoon describes possible scenarios of modification, in terms of I_{AA}

Model comparison on shapes

- Comparison with AMPT model, string melting on with hadronic rescattering
 - pp reference Data or PYTHIA (softQCD setting)
- Very large broadening at $|\Delta \eta| > 0.1$
- *I*_{AA} is overestimated by AMPT

Event plane and path-length dependence

- Spatial anisotropy from initial collision geometry and event-by-event fluctuations
- For each event, the trigger particle's direction is constrained

 $\varphi_s = \varphi_{\text{trig}} - \Psi_2$

- Amount of interaction through the medium depends on the direction
- Can be interpreted as path-length dependence of jets
- φ_s is divided into 6 planes

Path-length dependence of I_{AA}

- Weak path-length dependence observed in $p_{T,assoc} < 8.0$ GeV/c
 - Competing effect that comes from quenching / bremsstrahlung

Fri. 5/24/2019

Heavy Ion Meeting

Jets interacting with medium

- Casimir scaling gives color charge dependence of jet suppression in heavy ion collisions
 - Strong gluon jet suppression can explain the narrowing
 - Tested with PYTHIA in same kinematic region
- Relative quark and gluon jet suppressions and modification of their fragmentation functions play a role
 - Gives constraints to models

Conclusions and Outlook

- I_{AA} shape modification
 - Possible onset of narrowing is observed
 - AMPT shows very large broadening in $|\Delta\eta|>0.1$, contrary to the data
 - $I_{\rm AA}$ is also overestimated by AMPT, in $|\Delta\eta| < 0.3$
- The ${\it I}_{AA}\,$ as a function of $\varphi_{s}\,$ can estimate the path length dependence of jets
 - Weak path length dependence is observed at 4.0 $< p_{\rm T,asso} < 8.0~{\rm (GeV/}{\it c}{\rm)}$
 - No significant path-length dependence observed at $8.0 < p_{T,asso}$ (GeV/c)
 - AMPT Model does not describes the data qualitatively
- Other model studies are to be done in near future

Thank you!

Backups

Event plane determination

- Large η gap between TPC and VZERO
 - To reduce non-flow correlation contributions from TPC-V0 (i.e. jets in TPC does not show in V0)
- Nth order event plane (Ψ_n) is determined via Q-vector method:

$$\Psi_n = \left(\tan^{-1} \frac{Q_y^n}{Q_x^n} \right) / n$$

$$Q_x^n = \sum_i w_i^n \cos(n\varphi_i), Q_y^n = \sum_i w_i^n \sin(n\varphi_i)$$

where *i* denotes the particles in event, w_i^n is the weight for different detector

- Due to the finite multiplicity, the event-plane resolution is also needed to be calculated
 - Detector A's Resolution at nth event plane is determined using 3-sub detector method

$$\operatorname{Res}_{n}^{A} = \sqrt{\frac{\left\langle \cos n(\Psi_{n}^{A} - \Psi_{n}^{C})\right\rangle \left\langle \cos n(\Psi_{n}^{A} - \Psi_{n}^{B})\right\rangle}{\left\langle \cos n(\Psi_{n}^{B} - \Psi_{n}^{C})\right\rangle}}$$

Fri. 5/24/2019

Heavy Ion Meeting

Path-length dependence

- Path-length dependence of jet E_{loss} is indirectly observed by comparing R_{AA} of different centrality
- However, the details of the jet quenching process is not yet well understood

Path-length dependence

 $R_{CP} = \frac{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta|_{\text{central}}}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta|_{\text{peripheral}}}$ Nuclear Overlap function $\langle T_{AA} \rangle$

- Full jet reconstruction is made
- No significant difference between *R_{CP}* of charged particles and jets
 - Momentum redistribution is made outside of the jet radius (R=0.3)
- Path-length dependence of jet E_{loss} is indirectly observed by R_{CP}
- However, the details of the jet quenching process is not yet well understood

Other event plane dependence studies

- [PHENIX, arXiv:1803.01749]
- No significant 2nd order plane dependence of per-trigger yield
 - At $2 < p_{T,trig} < 10$ with $2 < p_{T,asso} < 4$ (GeV/c)
- Weak 2nd order dependence of per trigger yield
 - At $2 < p_{T,trig} < 4$ with $1 < p_{T,asso} < 2$ (GeV/c)

Other event plane dependence studies

- [ALICE, Nucl.Phys.A 967(2017) 500]
- No significant 2nd order plane dependence of yields in jethadron correlation