System-size dependence studies at ALICE

Heavy Ion Meeting, 24 May 2019 Beomkyu Kim INHA Univ. & KOALICE

Multiplicity in different collision systems

Particle production in pp collisions

- 2→2 scattering (LO)
- infrared 2->2 scatterings
 Multi Parton interactions (MP)
- Initial and Final state radiations

pp collisions

Multiplicity in different system sizes

- Particle production in pp collisions
- $2 \rightarrow 2$ scattering (LO)
- infrared 2->2 scatterings
 Multi Parton interactions (MPA)
- Initial and Final state radiations

 Chemically and kinematically equilibrium state

AA collisions

pp collisions

Multiplicity in different system sizes

Particle production in pp collisions

- $2 \rightarrow 2$ scattering (LO)
- infrared 2->2 scatterings
 Multi Parton interactions (MPN)
- Initial and Final state radiations

Some threshold? In-transition? in between the two collision systems?

 Chemically and kinematically equilibrium state

AA collisions

High-multiplicity pp

pA collisions

pp collisions

Low-momentum tracking and particle identification in a high multiplicity environment

ITS dE/dx 10⁻¹ 1 10 10² p_T (GeV/c)

ITS ($|\eta| < 0.9$)

- 6 layers of Si detector
- Trigger, tracking, vertex, PID

ITS ($|\eta| < 0.9$)

- 6 layers of Si detector
- Trigger, tracking, vertex, PID

TPC ($|\eta| < 0.9$)

- Gas detector
- Tracking, vertex, PID

ITS ($|\eta| < 0.9$)

- 6 layers of Si detector
- Trigger, tracking, vertex, PID

TPC ($|\eta| < 0.9$)

- Gas detector
- e Tracking, vertex, PID
 - VO (2.8 < η < 5.1, -3.7 < η < -1.7)
 - Forward arrays of Scintillator
 - Trigger, beam gas rejection
 - Multiplicity estimator

Multiplicity (and centrality) estimation

Multiplicity (and centrality) estimation

V0 detector

- Centrality estimation in AA collisions
 - VOM amplitude fitted with MC-Glauber
- Centrality estimation in p—Pb collisions
 - Pb-outgoing side V0 (V0A) amplitude fitted with MC Glauber

Multiplicity (and centrality) estimation

V0 detector

- Centrality estimation in AA collisions
 - V0M amplitude fitted with MC-Glauber
- Centrality estimation in p—Pb collisions
 - Pb-outgoing side V0 (V0A) amplitude fitted with MC Glauber
- Multiplicity percentile estimation in pp collisions
 - Raw VOM amplitude is used

Multiplicity density measurement

Multiplicity density in all systems

- SPD : innermost two silicon layers of ITS
- Track counting : A short track segment reconstructed with two hits on the SPD that can be extendable to the primary vertex

~					
A		and a second sec	Pieter		$Xe - Xe \sqrt{s_{NN}} = 5.44 TeV$
5 10 ³				=	0 - 2.5%
Sp E					2.5 - 5%
—				_	5 - 7.5%
-		10 C	Helelelelelelelelelelelelelelelelelelel		7.5 - 10%
		16.6		_	
_			a a a a a a a a a a a a a a a a a a a		
_				- : -	20 - 30%
			00000		30 - 40%
2		155		-	40 - 50%
102				_	50 - 60%
		Lais	0000		60 - 70%
_	00000		- STORE	_	70 - 80%
-					80 - 90%
-			00000		 Data (symmetrised)
				_	 Reflected
					Uncorr.syst.uncer
				-	Corr.syst.uncer
	-5	0	5		
	0	Ū	U U	η	
	Dhue		0 (0040)	25	40
	rnys.	<u>Lett. B / 9</u>	<u>u (2019</u>	<u> </u>	-40

$/\mathrm{d}\eta angle$
.2
.2
.23
.19
.22
.2
.25
.27
.26
.24
.27
.26
.33
.41
.51
.63
.73
.68
58

Multiplicity density measurement

Multiplicity density in all systems

- SPD : innermost two silicon layers of ITS
- Track counting : A short track segment reconstructed with two hits on the SPD that can be extendable to the primary vertex

Cent (%)	Class	η _{lab}	dN _{ch} /dη	sys
0 - 5	NSD	η _{lab} <0.5	53.22	± 1.38
5 - 10			42.40	± 1.10
10 - 15			37.30	± 0.97
15 - 20			33.64	± 0.87
20 - 30			29.30	± 0.76
30 - 40			24.49	± 0.66
40 - 50			20.34	± 0.53
50 - 60			16.46	± 0.43
10 - 20			35.49	± 0.92
20 - 40			26.89	± 0.70
40 - 60			18.39	± 0.48
60 - 80			10.97	± 029
80 - 100			4.47	± 0.14
5 - 15			39.86	± 1.04
15 - 30			30.77	± 0.80
30 - 60			20.42	± 0.53
60 - 100			7.63	± 0.24

Multiplicity density measurement

Multiplicity density in all systems

- SPD : innermost two silicon layers of ITS
- Track counting : A short track segment reconstructed with two hits on the SPD that can be extendable to the primary vertex

	Forward Multiplicity Estimator				
	\sqrt{s} (TeV)				
	5.02	7	13		
Multiplicity Class	$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta angle$				
0-0.01%	24.43 ± 0.37	$27.82{\pm}0.39$	$35.84{\pm}0.45$		
0.01-0.1%	21.62 ± 0.30	24.05 ± 0.27	31.06 ± 0.39		
0.1-0.5%	19.02 ± 0.24	21.25 ± 0.21	26.93 ± 0.33		
0.5–1%	17.29 ± 0.21	19.36 ± 0.20	24.24 ± 0.30		
0-1%	18.44 ± 0.23	20.60 ± 0.23	26.01 ± 0.32		
1-5%	14.47 ± 0.18	16.23 ± 0.16	19.98 ± 0.24		
0–5%	15.26 ± 0.19	17.11 ± 0.17	21.17 ± 0.25		
5-10%	11.91 ± 0.15	$13.34{\pm}0.13$	16.18 ± 0.19		
10-15%	10.29 ± 0.13	11.50 ± 0.12	13.77 ± 0.17		
15-20%	$9.10{\pm}0.11$	10.24 ± 0.10	12.01 ± 0.15		
20-30%	7.75 ± 0.10	$8.90{\pm}0.09$	10.03 ± 0.13		
30-40%	$6.33 {\pm} 0.08$	7.21 ± 0.07	$7.95 {\pm} 0.10$		
40-50%	5.21 ± 0.07	$5.84{\pm}0.06$	$6.32{\pm}0.08$		
50-70%	$3.93{\pm}0.05$	$4.30 {\pm} 0.05$	$4.49 {\pm} 0.06$		
70–100%	$2.42{\pm}0.03$	$2.33{\pm}0.03$	$2.54{\pm}0.04$		
0-100%	$5.48 {\pm} 0.07$	5.91±0.06	$6.92{\pm}0.09$		

QGP-like effects in small systems

Beomkyu Kim

Ridge in pp collisions at ALICE

Junlee Kim, Chonbuk National Univ.

Beomkyu Kim

Strangeness enhancement

One of the original traces of the QGP

• Thermal production via gluon fusion in a QGP medium

 K_S^0 , Λ , Ξ and Ω in Pb-Pb at 5.02 TeV

• Production w.r.t to π enhanced

Also studied in p—Pb and pp

 Strangeness increases with multiplicity following the universal trend

PYTHIA default

• Not describe the enhancement EPOS LHC

• Hydrodynamic treatment DIPSY (PYTHIA8 + ROPE)

- Like the Color Reconnection
- strings may overlap to form color ropes
- Increased tension → increase strangeness

Beomkyu K

p/π

ALICE, Phys. Rev. C 99, 024906

Behavior known from Pb-Pb collisions

• Interpreted as radial flow:

p are pushed to higher momenta by a common velocity field Same behaviors in pp and pA collisions with respect to system size

Resonance suppression

Medium-sized system (Xe-Xe)

Beomkyu Kim

Medium-sized system (Xe-Xe)

Summary

Multiplicity

- Key variable to connect pp to Pb—Pb collisions via high-multiplicity pp and medium sized AA collisions
- Fundamental constraints to theory
 - PYTHIA Rope, EPOS LHC and Color Reconnection
- Re-establishment of observables as a function of system size in Heavy-ion Physics
- Providing system-size information to ALICE and involved in various system-size dependent studies