Studying the Quark Gluon Plasma with heavy flavors

Gian Michele Innocenti (CERN/MIT)

Special thank to Prof. Byungsik Hong and Prof. Dongho Moon for providing me financial support for this trip and to my friend Dr. Hyunchul Kim for his precious help to organize it

Why hard probes and heavy flavors?

Hard probes to study the QGP

High p_T quarks and gluons created in hard parton-parton scatterings interact with the medium and lose energy via radiative and collisional process.

 \rightarrow The yields of high-p_T particles created are reduced (jet quenching)

Magnitude of the suppression

p_⊤ dependence of the suppression (and many others)

- → average momentum lost by partons that is connected to the density of the QGP medium
- → properties of the QGP and mechanisms of interactions

Hard probes to study the QGP

Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High $\rm p_{T}$ Jets in Hadron-Hadron Collisions.

> J. D. BJORKEN Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

Abstract

High energy quarks and gluons propagating through quark-gluon plasma suffer differential energy loss via elastic scattering from quanta in the plasma. This mechanism is very similar in structure to ionization loss of charged particles in ordinary matter. The dE/dx is roughly proportional to the square of the plasma temperature. For hadron-hadron collisions with high associated multiplicity and with transverse energy dE_T/dy in excess of 10 GeV per unit rapidity, it is possible that quark-gluon plasma is produced in the collision. If so, a produced secondary high-p_ quark or gluon might lose tens of GeV of its initial transverse momentum while plowing through quark-gluon plasma produced in its local environment. High energy hadron jet experiments should be analysed as function of associated multiplicity to search for this effect. An interesting signature may be events in which the hard collision occurs near the edge of the overlap region, with one jet escaping without absorption and the other fully absorbed.

Heavy-flavors to study the energy loss

Heavy flavors (charm and beauty) have large masses

 $m_c \sim 1.5 \text{ GeV}, m_b \sim 4.5 \text{ GeV}$

• Produced in hard partonic scatterings with large momentum transfer. For $Q^2 \ge 4m_{c,b}^2$, $\alpha_s \ll 1 \rightarrow a$ perturbative approach can be used.

$$\frac{d\sigma^{pp \to H_Q X}}{dp_t} = \sum_{i,j=q,\bar{q},g} f_i(x_i,\mu_F^2) \otimes f_j(x_j,\mu_F^2) \otimes \frac{d\sigma^{ij \to Q\bar{Q}}(x_i,x_j,\mu_F^2)}{d\hat{p_t}} \otimes D(z,\mu_F^2)$$

- formation time of heavy quark << formation time of QGP
- no thermal production $T_{\text{QGP}} \sim 150\text{--}180~MeV$
- total amount of charm and beauty is conserved in the evolution of the medium

Mechanisms of in-medium energy loss

Elastic scatterings with the medium: $\langle E_{loss} \rangle \propto L^* ln(E_{in}) * C_R * f(T)$

Medium-induced gluon radiation: $<\Delta E > \propto C_R q L^2$

Flavor dependence of Eloss

$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

 \rightarrow R_{AA}^B > R_{AA}^D > R_{AA}^{light} (??)

Heavy flavors as a probe for hadronisation

→D_s/B enhancement and baryon/meson enhancement in central collisions **Recombination:** low momentum quark hadronizes through a process of coalescence with a light quark of the medium.

Investigate the QGP degrees of freedom

pQCD system?

 collisional and radiative with quasi particles strongly-coupled medium?
"drag" force in medium w/o quasi-particles

heavy quarks to study medium collectivity

Non-complete thermalisation due to their mass

- \rightarrow stronger constrain on D_s
- → strong constraints on the role of collisional and radiative processes

Constraints on the role of hadronic phase in "generating" the observed v_n (e.g. via $D_s v_2$ measurements)

heavy flavor energy loss

Prompt D⁰-meson R_{AA} at 5.02 TeV

No PID \rightarrow wide gaussian for candidates with swapped mass hypothesis

10.1016/j.physletb.2018.05.074

[4] Phys. Rev. D 91 (2015) 085019 [6] Phys. Rev. C 93 (2016) 034906

Prompt D⁰-meson R_{AA} at 5.02 TeV

- Significant contribution of non-prompt D⁰ from b hadron decays at LHC (O(10%))
- CMS separates prompt and non-prompt D⁰ from DATA using D⁰ DCA

• Fully reconstructed B⁺, B_s, Λ_b in can isolate the possible effect of beauty recombination

$R_{AA} \text{ of } b \rightarrow DX \text{ and } b, c \rightarrow e$

New measurements of beauty production via displaced D mesons and HF electrons \rightarrow hint of a smaller suppression at low-intermediate p_T

Flavor dependence of Eloss at 5.02 TeV

A little toy model to understand RAA

- Considered a pp particle spectrum in pp collision
- Computed "quenched" spectrum assuming two scenarios:
 1.each particle loses a fraction of its initial p_T
 2.each particle loses a fixed amount of p_T independently of its initial p_T

- 1. Elastic scatterings with the medium: $\langle E_{loss} \rangle \propto L^* ln(E_{in}) * C_R * f(T)$
- 2. Medium-induced gluon radiation: $<\Delta E > \propto C_R q L^2$

HANDLE WITH CARE! this toy model has no ambition of being a realistic model, but simply a way to get an intuitive understanding of the R_{AA} shapes

"Toy-model" charged particle RAA

Scenario 1) energy loss proportional to p_T (~collisional energy loss) \rightarrow the R_{AA} is ~ flat as a function of p_T

Scenario 2) energy loss independent from initial p⊤ (~radiative energy loss) →R_{AA} constantly increases

D meson R_{AA}

Scenario 1) energy loss proportional to p_T (~collisional energy loss) \rightarrow slight decrease as a function of p_T

Scenario 2) energy loss independent from initial p_T (~radiative energy loss) $\rightarrow R_{AA}$ increases as a function of p_T as for charged particles

D vs B meson R_{AA}

BE CAREFUL: you can have different suppression even with the same energy loss

I can reproduce a very similar shape of B vs D simply as a consequence of the different pT shape of B and D mesons. In particular because the beauty cross section gets smaller when $p_T < 4-5$ GeV ($m_b \sim 4$ GeV)

Have we observed flavor dependence?

Big differences can be obtained as a simple consequence of the different initial pp spectra without any energy loss flavor dependence!

New insights using heavy-flavor jets

Complementary to heavy flavor single-hadron measurements:

- modification of the fragmentation function in heavy-ion collisions
- spacial redistribution of the lost energy
- heavy-flavor (~quark jets) vs light (~gluon-jets) jet studies

R_{AA} of D⁰-tagged jets in PbPb

Complementary to heavy flavor single-hadron measurements:

- modification of the fragmentation function in heavy-ion collisions
- spacial redistribution of the lost energy
- heavy-flavor (~quark jets) vs light (~gluon-jets) jet studies

First measurement of D⁰-tagged jets in central PbPb collisions by ALICE:

- D-tagged jets down to 5 GeV!
- similar suppression compared to light jets at low p_T and ~ lower suppression at high p_T

Angular distribution of D⁰ with respective to the jet axis $\frac{1}{N_{JD}} \frac{dN_{JD}}{dr}$

 $r = \sqrt{\Delta \phi_{JD}^2 + \Delta \eta_{JD}^2}$

relative η , Φ between D and jets

- pp: constraints on the mechanism of HF production (e.g. role of splitting)
- PbPb:
 - test of energy loss mechanisms
 - study the "response" of the medium in presence of a high momentum jet

CMS-PAS-HIN-18-007

- Jet reconstruction
- D⁰ reconstruction and
- selection
- D⁰-jet pairs
- D⁰ yields extracted in bins of distance r
- background subtraction and corrections (removing the "uncorrelated" pairs)

background subtraction

CMS-PAS-HIN-18-007

- For both D⁰-jet (left) and correlation between jets and light particles (right) we observe an enhancement as large angles:
 - → theoretical interpretation still not complete!
 - \rightarrow "medium response"? why is so similar for light and heavy particles?

heavy flavor collectivity

Prompt D⁰ v₂ in PbPb at 5.02 TeV

Positive prompt D⁰ v₂ that increases with centrality at both low and high p_T

- Low p_T: charm quarks take part in the collective motion (collisional)
- High p_T: indicates path length dependence of energy loss (radiative)

Prompt D⁰ v₂ in PbPb at 5.02 TeV

Low p_T : v_2 (prompt D^0) $\approx v_2$ (charged particles) in central events v_2 (prompt D^0) $< v_2$ (charged particles) in peripheral events

High p_T : v_2 (prompt D^0) $\approx v_2$ (charged particles)

Prompt D⁰ v₃ in PbPb at 5.02 TeV

Low p_T : v_3 (prompt D^0) > 0; High p_T : v_3 (prompt D^0) ≈ 0 Little centrality dependence

Prompt D⁰ v₃ in PbPb at 5.02 TeV

Low p_T : v_3 (prompt D^0) < v_3 (charged particles) High p_T : v_3 (prompt D^0) $\approx v_3$ (charged particles) Both have little centrality dependence

Comparison to theoretical calculations

Current measurement $L_{int}=150/\mu b$, with ~70% statistical uncertainty at low p_{T.} ~20% uncertainties expected in 2018 ($L_{int}=1.5/nb$) ~8% uncertainties expected with Run3! ($L_{int}=10/nb$)

$b \rightarrow \psi X v_2 \text{ at } 5.02 \text{ TeV}$

Similar flow for charm and beauty? Need more data!

$b \rightarrow \psi X v_3 \text{ at } 5.02 \text{ TeV}$

Very impressive ATLAS result on the v_3 of HF muons. \rightarrow Pretty significant non zero v_3 also for beauty!

D_s and B_s: insights into hadronization

28 pb⁻¹ (pp) + 351 μb⁻¹ (PbPb) 5.02 TeV 2.5 CMS $B_s^0 R_{AA}$ Preliminary $B^+ R_{AA}$ 1.5 **QM 2018** R_AA |y| < 2.40.5 (10 50 20 30 40 p₁ (GeV/c)

 Significant observation of D_s/D enhancement in central PbPb

- First B_s measurement in PbPb collisions
- hint of B_s/B enhancement even if with very large uncertainties
- → consistent with the presence of charm recombination in the medium
 → one of the most striking indication of color reconnection in the QGP

Λ_c : insights into hadronization

- Λ_c/D enhancement increases toward low p_T , increases from peripheral to central
- Similar Λ_c/D at RHIC and LHC (different p_T ranges)
- → Enhancement larger than models based on fragmentation + recombination Crucial measurement to extract total cc cross section !

heavy-flavour in small systems

Heavy-flavours in pPb collisions

- first observation of significant modification due to shadowing
- binary scaling holds at high p_T

 \rightarrow compatible with predictions from FONLL scaled by A=208

HF collectivity in pPb collisions

- Positive v₂ for HF particles (D⁰, D* mesons, e[±] and μ[±] from HF) from 2-particle correlations in high-multiplicity p-Pb
- $D^0 v_2$ persists up to high p_T , weaker than that of light flavors

Some ideas for future HF analysis

Precise D-Dbar correlations in pp

D-hadrons and D-D correlations for studying pp production mechanisms

HF correlations in PbPb

In PbPb, to investigate the mechanisms of charm-interaction with the medium

Simplified example! quark level of a LO process! take with care!

D-Dbar p_T asymmetry and $\Delta \phi$:

- pQCD vs strongly coupled QGP?
- path-dependence of energy loss
- collisional vs radiative?

→2018 or Run3 luminosity is needed!

Small to large systems: flow

Heavy-flavour studies can provide strong insights into the possible formation of a deconfined state in smaller systems

- test of collectivity with heavier particles that acquire flow by interaction with expanding medium
- QGP in small system?

Small to large systems: recombination

Ds/D as a function of multiplicity to test charm recombination

 strangeness enhancement observed by ALICE in high-multiplicity pp events.

Aren't we too lucky?

Projections for Run3 measurements

High-Luminosity LHC!

- With 10/nb, very high precision measurements of charged particle, D, B R_{AA} and v_n!
- D_s / B_s R_{AA} and v_n measurements to study recombination and the role of the hadronic phase for charm and beauty!

Projections for Run3 measurements

High-Luminosity LHC!

Thank you for your attention!

BACKUP

Same suppression for b-jets and inclusive jets at high p_T

di-b-jet asymmetry at 5.02 TeV

"Shift" at low x_J of b-jets was found to be compatible with the one of inclusive (light) jet

CMS-HIN-16-005 Final version! it will be on arXiv very soon!

Prompt D⁰ R_{AA} in PbPb at 5.02 TeV

Iyl < 1, Centrality **0-100%**

- Comparison with theoretical predictions
 - S. Cao et al. [1] (Improved Langevin eq, Linearized Boltzmann)
 - M. Djordjevic [2] (pQCD calculations in a finite size optically thin dynamical QCD medium)
 - ➡ CUJET3.0 [3] (jet quenching model based on DGLV opacity expansion theory)
 - ➡ AdS/CFT [4] (a model based on the antide Sitter/conformal field theory)

arXiv: 1708.04962

[1] arXiv:1703.00822

[2] Phys. Rev. C 92 (2015) 024918

[3] JHEP 02 (2016) 169

[4] Phys. Rev. D 91 (2015) 085019

Prompt D⁰ R_{AA} in PbPb at 5.02 TeV

lyl < 1, Centrality **0-10%**

- Comparison with theoretical predictions
 - S. Cao et al. [1] (Improved Langevin eq, Linearized Boltzmann)
 - → M. Djordjevic [2] (pQCD calculations in a finite size optically thin dynamical QCD medium)
 - → CUJET3.0 [3] (jet quenching model based on DGLV opacity expansion theory)
 - → AdS/CFT [4] (a model based on the antide Sitter/conformal field theory)
 - Vitev et al. [5] (jet propagation in matter, soft-collinear effective theory with Glauber gluons (SCETG))
 - ➡ PHSD [6] (Parton-Hadron-String) Dynamics transport approach)

[1] arXiv:1703.00822

[3] JHEP 02 (2016) 169

[4] Phys. Rev. D 91 (2015) 085019 [2] Phys. Rev. C 92 (2015) 024918 [5] Phys. Rev. D 93 (2016) 074030 [6] Phys. Rev. C 93 (2016) 034906

Azimuthal anisotropy

 The azimuthal anisotropy can be characterized by the Fourier coefficients v_n in the azimuthal angle (φ) distribution of the hadron yield

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos[n(\phi - \Psi_{r})]\right),$$

- ➡ Elliptic flow: v₂
- ➡ Triangular flow: v₃
- Azimuthal anisotropy origins from
 - low p_T
 - collective motion in the thermalized medium
 - ➡ fluctuation (v₃)
 - high p_T
 - path length dependence of the energy loss

Scalar product method

- v_n coefficient can be expressed in terms of Q-vectors as

Yield extraction

 Simultaneous fit on invariant mass distribution and vn vs mass

$$v_n^{S+B}(m_{\rm inv}) = \alpha(m_{\rm inv})v_n^S \neq [1 - \alpha(m_{\rm inv})]v_n^B(m_{\rm inv}),$$

- v_n^s : v_n of signal D^0
 - fit parameter
- other terms:
 - → V_nS+B(m_{inv}): V_n of all D⁰ candidates
 - ➤ Vn^B(minv): Vn of combinatorial background, modeled by a linear function
 - → a(m_{inv}): signal fraction from invariant mass spectra fit

Table 11: Comparative overview of the models for heavy-quark energy loss or transport in the medium described in the previous sections.					
Model	Heavy-quark	Medium modelling	Quark-medium	Heavy-quark	Tuning of medium-coupling
	production		interactions	hadronisation	(or density) parameter(s)
Djordjevic et al.	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	Medium temperature
[511-515]	no PDF shadowing	nuclear overlap	finite magnetic mass		fixed separately
		no fl. dyn. evolution			at RHIC and LHC
WHDG	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	RHIC
[459, 519]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)
	_	no fl. dyn. evolution			
Vitev et al.	non-zero-mass VFNS	Glauber model	radiative energy loss	fragmentation	RHIC
[422, 460]	no PDF shadowing	nuclear overlap	in-medium meson dissociation		(then scaled with $dN_{ch}/d\eta$)
		ideal fl. dyn. 1+1d			
		Bjorken expansion			
AdS/CFT (HG)	FONLL	Glauber model	AdS/CFT drag	fragmentation	RHIC
[624, 625]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)
		no fl. dyn. evolution			
POWLANG	POWHEG (NLO)	2+1d expansion	transport with Langevin eq.	fragmentation	assume pQCD (or 1-QCD
[507–509, 585, 586]	EPS09 (NLO)	with viscous	collisional energy loss	recombination	U potential)
	PDF shadowing	fl. dyn. evolution			
MC@sHQ+EPOS2	FONLL	3+1d expansion	transport with Boltzmann eq.	fragmentation	QGP transport coefficient
[528-530]	EPS09 (LO)	(EPOS model)	rad. + coll. energy loss	recombination	fixed at LHC, slightly
	PDF shadowing				adapted for RHIC
BAMPS	MC@NLO	3+1d expansion	transport with Boltzmann eq.	fragmentation	RHIC
[537-540]	no PDF shadowing	parton cascade	rad. + coll. energy loss		(then scaled with $dN_{ch}/d\eta$)
TAMU	FONLL	2+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD
[491, 565, 606]	EPS09 (NLO)	ideal fl. dyn.	collisional energy loss	recombination	U potential
	PDF shadowing		diffusion in hadronic phase		
UrQMD	PYTHIA	3+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD
[608-610]	no PDF shadowing	ideal fl. dyn.	collisional energy loss	recombination	U potential
Duke	PYTHIA	2+1d expansion	transport with Langevin eq.	fragmentation	QGP transport coefficient
[587, 628]	EPS09 (LO)	viscous fl. dyn.	rad. + coll. energy loss	recombination	fixed at RHIC and LHC
	PDF shadowing				(same value)

[1506.03981]

Does the energy loss depend on parton flavour?

$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

$\mathbf{R}^{\text{light particle}_{AA}} < \mathbf{R}^{\text{D}}_{AA} < \mathbf{R}^{\text{B}}_{AA}?$

Hints of different suppression for D and non-prompt J/ψ at low p_T !

Same suppression observed for inclusive jets and b-tagged jets

CMS-HIN-15-005, PRL 113 (2014) 132301

Gian Michele Innocenti, MIT, Moriond QCD 2016, "Overview of CMS heavy ion results"

Heavy-Flavour production in pPb

 \rightarrow compatible with predictions from FONLL scaled by A=208

tagged c and b-jet production \rightarrow compatible with predictions from PYTHIA scaled by A=208

HF pPb production not significantly modified by cold nuclear matter effects (e.g. PDF modification in nuclei)

PRL 116 (2016) 032301, CMS-HIN-15-012 ,PLB 754 (2016) 59

Gian Michele Innocenti, MIT, Moriond QCD 2016, "Overview of CMS heavy ion results"

Level-1 trigger= first level of trigger of CMS, hardware-based (FPGA) High-Level-Trigger= second trigger layer, software-based

Focus on D⁰ High-Level triggers

 \rightarrow Collect full luminosity of high-p_T D⁰ mesons, not doable with MB trigger

Focus on D⁰ High-Level triggers

• factor x 800 (30) increased lumi in pp (PbPb) for $p_T > 60$ GeV compared to MB

• entire $D^0 \rightarrow K^- \pi^+$ statistics collected for $p_T > 60$ GeV

D vs B p_T shape in pp

