Electroweak bosons in Heavy Ion Collisions

Andre Ståhl

Heavy Ion Meeting Korea University

Outline

- Introduction
- Z boson results in pPb collisions at 5.02 TeV
- W boson results in pPb collisions at 5.02 TeV
- W boson results in pPb collisions at 8.16 TeV

Introduction

Korea Univ HI Meeting

2

What are electroweak bosons?

They are force carriers of the electroweak force:

≻ Electromagnetism → Photons

> Weak force \rightarrow W and Z bosons

Korea Univ HI Meeting

How do weak bosons interact?

Z boson decays

- Weak bosons only interact with leptons and quarks. They don't couple to gluons (QCD).
- Weak bosons don't interact strongly with the nuclear medium produced in heavy ions

How are weak bosons produced in pp?

- Protons are made of three valence quarks (2 up and 1 down).
- Sea quarks are produced from gluon into virtual q-qbar pairs.
- Weak bosons are produced from a valence quark and sea antiquark in the initial hard parton scattering
- Production of weak bosons is sensitive to quark PDFs

QCD Factorization

QCD Factorization Theorem: separate the hadronic cross section into a perturbative partonic cross section depending on the process, and non-perturbative Parton Distribution Functions.

$$\sigma_X(s, M_X^2) = \sum_{a,b} \int_{x_{\min}}^1 dx_1 dx_2 f_{a/h_1}(x_1, M_X^2) f_{b/h_2}(x_2, M_X^2) \hat{\sigma}_{ab \to X} \left(x_1 x_2 s, M_X^2 \right)$$

Hadron-level cross section Parton Distributions Parton-level cross-section

- **x**: Fraction of hadron's momentum carried by the parton (gluon or quark)
- M_x : Scale at which the process is probed (mass of hard probes or p_T of jets)
- The **PDFs** are **universal** (doesn't depend on the hard scattering process). Thus can be used to provide predictions for hadronic collisions.
- Good precision of PDFs is vital for understanding LHC collisions.

 $f_{a/A}(x_a, Q$

 $T_a p_A$

Parton Distribution Functions

- One **PDF** for **each parton** in the hadron: $u(x,Q^2)$, $d(x,Q^2)$, $g(x,Q^2)$, ...
- At LO, PDFs **represent** the **probability** of **finding** a **parton** carrying a **fraction x** of the hadron's momentum.
- Shape of each PDF changes depending on the flavour.
- QCD imposes constrains based on valence and momentum sum rules

Momentum sum rule

$$\int_0^1 dx \ x \left[\Sigma(x) + g(x) \right] = 1$$

Valence sum rule (proton) $\int_0^1 dx \ (u(x) - \bar{u}(x)) = 2 \ , \quad \int_0^1 dx \ (d(x) - \bar{d}(x)) = 1$

Parton evolution equations (DGLAP)

 The dependence of PDFs on the energy scale Q can be derived using perturbative QCD (DGLAP evolution equations).

$$\frac{\partial q_i(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} P_{ij}\left(z,\alpha_s\left(Q^2\right)\right) q_j\left(\frac{x}{z},Q^2\right)$$

 The x-dependence of the PDFs is non-perturbative and can only be derived by fitting data (global analysis). Once constrained at a given scale Q₀, DGLAP determines the PDFs at other scales Q.

What happens in HI collisions?

• PDFs of nucleons inside nuclei are modified compare to free proton PDFs

03/07/18

 Knowledge of nuclear PDF (nPDF) in Pb is important to understand the initial state of pPb and PbPb collisions at LHC

Nuclear PDFs

2) Generalized A-parametrization (nCTEQ)

$$f_{i}^{p/A}(x_{N}, \mu_{0}) = f_{i}(x_{N}, A, \mu_{0})$$

$$f \sim \dots x^{c_{1}(A)}(1 - x)^{c_{2}(A)}\dots$$

$$c_{k} \sim c_{k,0} + c_{k,1}\left(1 - A^{-c_{k,2}}\right)$$
Proton Nuclear

03/07/18

Nuclear PDF factors

Korea Univ HI Meeting

11

Proton-lead collisions

Korea Univ HI Meeting

- Proton-lead asymmetric collisions
- Center-of-mass frame rapidity boost ≈ 0.465
- Define forward-backward ratios: • $R_{FB} = \frac{N(\eta_{CM} > 0)}{N(\eta_{CM} < 0)} = \frac{N(p-going)}{N(Pb-going)}$

Weak bosons in pPb collisions

Dominant production modes: $ud \rightarrow W^+$, $du \rightarrow W^$ $u\bar{u} \rightarrow Z$, $d\bar{d} \rightarrow Z$

- Sensitive to PDFs of valence and sea quarks
- Quarks behave differently inside bound nucleons compared to free-nucleons \rightarrow nuclear PDF effects.

Weak boson production in pPb @ CMS

 $x_{Pb} = \frac{M}{\sqrt{S}} e^{-y}$

@ high Q²

q W^+ R_{EPPS16} 1.3 antishadowing maximum 1.1 1.0 163 0.9 small-x shadowing 0.8 **EPJ C77** 0.7 EMC minimum 0.6 0.5 10^{-2} 10^{-3} 10^{-1} W in pPb @ 8.16 TeV $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ pPb **CMS** Simulation Preliminary **POWHEG v2** $10 \models \mathbf{W}^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ $p_{-}^{\mu} > 25 \text{ GeV/c}$ probe the quark nPDFs in $10^{-3} < x < 10^{-1}$ CMS-PAS-HIN-17 ×^qd 10⁻ 10 Korea Univ HI Meeting 03/07/18

Z boson in pPb at 5.02 TeV

03/07/18

- Lepton kinematic cuts: $p_{_{\rm T}}$ > 20 GeV/c and $~|\eta|$ < 2.4
- Z boson yield **extracted** by **counting** $\mu^+\mu^-$ and e^+e^- **pairs** within invariant mass 60 < M < 120 GeV/c²

 PDF calculations with and without nuclear corrections in agreement with measured pPb cross section

03/07/18

• Forward-backward results slightly favors nPDFs but large unc.

Z in pPb at 5.02 TeV: ATLAS

- Lepton kinematic cuts: $p_T^1 > 20$ GeV/c and $p_T^2 > 10$ GeV/c
- Z boson yield extracted by performing a fit of the $\mu^+\mu^-$ and e^+e^- invariant mass within 60 < M < 120 GeV/c²
- Signal given by MC template while background parameterized from like same-sign lepton pairs in data.

Z in pPb at 5.02 TeV: ATLAS

- A slight increase of the cross sections seen in the backward region (large x).
- Results can't exclude the PDF without nuclear corrections.

Z in pPb at 5.02 TeV

- ALICE and LHCb used same strategy as CMS for Z bosons. But suffered from statistics (< 100 Z bosons)
- In overall, the run1 Z boson data is in good agreement with EPS09 nPDF calculations but can not exclude PDF without nuclear corrections

W boson in pPb at 5.02 TeV

03/07/18

- Lepton kinematic selection: $p_{_{\rm T}}$ > 25 GeV/c and $|\eta|$ < 2.4
- W boson yield extracted by fitting the missing transverse energy (MET) in different bins of lepton pseudorapidity.

- Good agreement with PDF calculations with and without nuclear corrections within uncertainties.
- Slight increase for W⁻ in the backward region (large x_{Pb}) compared to PDF calculations

Forward-Backward Ratios

• Measured forward-backward ratios tend to favor the nuclear PDF calculations but uncertainties too large to exclude the free-proton PDF

 Muon charge asymmetry insensitive to nuclear corrections. Deviations in data in the backward region might suggest differences between up and down PDFs but more statistics is needed.

03/07/18

W in pPb at 5.02 TeV: ATLAS

- A small enhancement in data for W⁻ at backward η compared to proton PDF (similar to CMS).
- Results agree with PDF
 calculations within uncertainties

W in pPb at 5.02 TeV: ALICE

- Muon kinematic selection: $p_{\tau} > 10 \text{ GeV/c}$
- W boson yield extracted by fitting the muon $p_{_{T}}$ in two forward η bins

W in pPb at 5.02 TeV: ALICE

 Good agreement between proton and nPDF calculations. Not enough statistics to discriminate between the results

W bosons in pPb at 8.16 TeV

03/07/18

W in pPb at 8.16 TeV

Year	√s _{NN}	Luminosity (CMS)
2013	5.02 TeV	35 nb ⁻¹
2016	8.16 TeV	174 nb ⁻¹

• W boson yield increased by ~10x in 2016 data w.r.t. 2013, due to increase of ~2x in xsec and ~5x in lumi

W bosons in pPb

u

Б

CMS-PAS-HIN-17-007

μ†

• Decay channel: muon + missing momentum

- Muon selection: Leading isolated muon with p_{τ} > 25 GeV/c and $|\eta|$ <2.4
- Muon isolation: Sum of p_{τ} of PF particles (y , h[±] & h⁰) around the muon < 15% of muon p_{τ} (suppress multi-jet bkg)
- Event selection:
 - Veto $Z \rightarrow \mu^- \mu^+$: Reject events with $\mu^- \mu^+$ pairs, $p^{\mu^-}_{\tau} > 15 \& p^{\mu^+}_{\tau} > 15 \text{ GeV/c}$
- **Dominant backgrounds:** QCD jet \rightarrow muon passing isolation, and $Z \rightarrow$ muon + (missing muon)

03/07/18

ΔR=0.3

W bosons in pPb

CMS-PAS-HIN-17-007

- Simulation: pPb NLO POWHEG v2 including CT14+EPPS16 nPDF
- Signal and electroweak background: Template from simulation
- QCD multi-jet background: Data-driven functional form
- Extraction: Fits of the missing p_{T} distribution in 24 bins of muon η_{CM}

W boson: cross section

CMS-PAS-HIN-17-007

03/07/18

- $\eta_{CM} < 0$ (large x_{Pb}): Results agree with PDF and nPDF calculations
- $\eta_{CM} > 0$ (small x_{Pb}): Results favor the nuclear PDF calculations

W boson: forward-backward ratio

- Uncertainties fully correlated in η_{CM} cancels (correlations included)
- Exclude (>7 σ) free-nucleon PDF calculations
- Experimental uncertainties smaller than nPDF uncertainties

W boson: charge asymmetry

CMS-PAS-HIN-17-007

- nPDF effects cancel, except for different up / down quark modification
- All (n)PDF calculations reproduce the measurements

03/07/18

SUMMARY

- The study of weak boson production in pPb provides a powerful tool to constrain the nuclear modifications of the quark PDFs.
- Z and W boson production measured in pPb at 5.02 TeV are in good agreement with PDF calculations with and without nuclear corrections.
- The results of the W boson production at 8.16 TeV presents the observation of nuclear modifications of the (anti) quark PDFs by excluding the free-proton PDF.
- W boson production at 8.16 TeV measurements are in good agreement with EPPS16 nPDF calculations and its experimental uncertainties are smaller than the PDF uncertainties.

Thank you for your attention!

CMS detector

Korea Univ HI Meeting

W boson: forward-backward ratio

- Strongly deviate from CT14 calculations favoring EPPS16
- Experimental uncertainties significantly smaller than nPDF uncertainties

W boson: charge asymmetry

CMS-PAS-HIN-17-007

03/07/18

- Good agreement between measurement at 8.16 TeV and 5.02 TeV after shifting the η_{CM} taking into account the difference in energy

W boson: correlation matrix

CMS-PAS-HIN-17-007

• W boson cross section measurement almost uncorrelated in muon pseudorapidity, while a bit correlated in muon charge

W boson: PDF comparison

CMS-PAS-HIN-17-007

- Compute χ^2 test between the measurements and each individual PDF set
- Good agreement between data and EPPS16 nPDF

Neutron nPDF

 Use isospin symmetry to correlate the proton PDF with the neutron PDF in the Pb ion, taking into account the right proportions of each: 82 protons and 126 neutrons

Top quarks in pPb collisions

Dominant production modes: gluon → tt

- Top quarks decay before interacting with the medium
- Measurement of top quark and dijet production probe modifications to gluon PDF

• Top quarks constrain the high x (x>0.05) and high Q ($Q^2 \sim m_{top}^2$) region

Top quarks in pPb

Phys. Rev. Lett. 119 (2017), 242001

03/07/18

- B-quark tagger: Based on combined secondary vertex
- Lepton Selection: Isolated lepton with $p_{\tau} > 30$ GeV/c & $|\eta| < 2.1$
- Extraction: Fits of the W → jj' mass using functional forms in different b-jet and lepton flavor categories, without relying on simulation

Top quarks: cross section

Phys. Rev. Lett. 119 (2017), 242001

- **First observation** (>5σ) of **top quark** production in **pPb** collisions!
- Inclusive cross section (45±8 nb) in agreement with NNLO+NNLL pQCD interfaced to NLO proton/nuclear PDF calculations

Z in PbPb at 2.56 TeV: CMS

Korea Univ HI Meeting

Z in PbPb at 2.56 TeV: CMS

Korea Univ HI Meeting

Z in PbPb at 2.56 TeV: CMS

W in PbPb at 2.56 TeV: CMS

W in PbPb at 2.56 TeV: CMS

Korea Univ HI Meeting