

Hadron production in heavy ion collisions

Francesca Bellini, CERN (Switzerland)
Heavy Ion Meeting – Seoul, July 4 and down to Heavy Ion Meeting – Seoul, July 4

QCD and light flavors

Confining property of QCD \Rightarrow colorless hadrons Asymptotic freedom \Rightarrow deconfinement, QGP Confinement and chiral transitions both around the same T_c

Lattice QCD locates the phase transition at $T_c \sim 145 - 164$ MeV [A. Bazavov et al., PRD 90 (2014) 094503]

Light flavor (LF) ≡ composed by **u, d** and **s**

$$
\frac{m_{\rm u} \approx 2.2 \text{ MeV}}{m_{\rm d} \approx 4.7 \text{ MeV}} \qquad < \Lambda_{\rm QCD} < m_{\rm c} \approx 1.3 \text{ GeV}
$$
\n
$$
m_{\rm s} \approx 96 \text{ MeV}
$$

u, d, s can be **thermally produced in QGP**, as $m_{u,d,s} < T_c$

(Some of) The fundamental questions

- 1. Can we produce **QGP** in AA collisions? And in pp, pA? What is the smallest system where we can produce QGP?
- 2. Can we measure the chemical freeze-out temperature T_{ch}? Do all (light) flavours freeze-out at the same temperature T_{ch} ?
- 4. How does the **hadronic phase** affect the measured observables?
- 5. How are **composite ''fragile'' objects** such as anti-nuclei formed in AA?

Questions addressed by a comprehensive set of measurements of **identified particle production in all collision systems**: **π[±], K[±], K⁰_S, p, Λ, Ξ, ∧, ρ, Κ^{*0},φ, Σ^{*±}, Λ*, Ξ^{*0},** (anti)d, (anti)³H, (anti)³He, (anti)⁴He, (anti)³_AH

It's all about production mechanisms

Thermal production

Measure *p***^T -integrated yields and particle ratios**

Hydrodynamics (flow)

Fragmentation + recombination

Measure p_T **spectra, mean** p_T **,** p_T **-differential ratios, flow harmonics, multi-particle correlations**

Composite objects (Anti-)(hyper-)nuclei Strangeness

System size \Longleftrightarrow charged particle multiplicity

Event multiplicity/centrality **classes** defined "slicing" on the signal amplitude measured in **the forward region** / detectors (In ALICE, in **V0 scintillators**, placed at 2.8 < η < 5.1 (V0A) and -3.7 < η < -1.7 (V0C))

⟨**dNch/d***η*⟩**,** *N***ch** measured in **at mid-rapidity** → avoid "auto-biases" in multiplicity determination, especially in small systems

New data in Xe-Xe: test system dependence

A short (~6h) run with ¹²⁹Xe at $\sqrt{s_{NN}}$ = 5.44 TeV in Nov. 2017 ¹²⁹Xe is smaller nucleus, different geometry wrt ²⁰⁸Pb

Charged particle production in AA collisions

In Pb-Pb $\langle dN_{ch}/dη \rangle / \langle N_{part} \rangle$ increases with \sqrt{s} following a steeper power law than pp

About **20% increase from 2.76 TeV** to 5.02 TeV (similar (N_{part}))

Similar $\langle dN_{ch}/dη \rangle/N_{part}$ in most central **Xe-Xe** and Pb-Pb (little difference in energy)

Xe-Xe vs Pb-Pb

Consistency between **Pb-Pb** at different energies

Scaling violations:

- N_{part} scaling violated
- Central collisions of medium-size nuclei (**Xe**) produce more particles per N_{part} than mid-central collisions of large nuclei (Pb) at the same N_{part} → **to be understood**

π,K,p spectra in AA collisions

πKp constitute the bulk of particle production → **fundamental input!**

- p_T spectra:
	- Compare to hydrodynamic models
	- Quantify radial flow
	- Discuss flow effect vs recombination at intermediate p_T
- *p*_T-integrated particle ratios
	- Study hadro-chemistry and extract chemical freeze-out temperature
- Nuclear modification factors ($R_{AA}R_{DA}$)
- Reference for resonance and nuclei production studies

"First-order" look at spectral shapes: $\langle p_{\tau} \rangle$

First-moment of the distribution provides first-order characterization of spectral shapes

→ **"day-1" benchmark** for models

Hydrodynamics predicts

[*G. Giacalone et al., PRC 97, 034904 (2018)]*

- weak dependence on centrality in AA collisions
- small difference between Xe-Xe and $Pb-Pb$, $O(3%)$
- mass scaling of $\langle p_{\text{T}} \rangle$
- → New data in Xe-Xe for **charged hadrons** show consistency with Pb-Pb and scaling of charged hadron production with charged particle multiplicity

$\langle p_{\tau} \rangle$ of identified hadrons – Pb-Pb, Xe-Xe

⟨*p*^T ⟩ of **identified hadrons** consistent between Xe-Xe and Pb-Pb at similar multiplicities

- Increasing of mean p_T with multiplicity
- Mass ordering observed, as featured by a system experiencing radial flow

$\langle p_{\tau} \rangle$ of identified hadrons - p-Pb

⟨*p*^T ⟩ of **identified hadrons** consistent between Xe-Xe and Pb-Pb at similar multiplicities

- Increasing of mean p_T with multiplicity
- Mass ordering observed, as featured by a system experiencing radial flow

Similar trend with mult. in pp, pA (even steeper!)

ALI-PUB-103929

$\langle p_{\tau} \rangle$ of identified hadrons - pp

⟨*p*^T ⟩ of **identified hadrons**

consistent between Xe-Xe and Pb-Pb at similar multiplicities

- Increasing of mean p_T with multiplicity
- Mass ordering observed, as featured by a system experiencing radial flow

Similar trend with mult. in pp, pA (even steeper!)

BUT also models with initial stage effects (e.g. CGC + PYTHIA) can reproduce the mass ordering (also for v_2 !!!)

For details on the model, see backup

Mass ordering of $\langle p_{\tau} \rangle$ (and v_2) not be an exclusive **product of hydrodynamical flow**

⟨*p***^T** ⟩ **only provides first-order characterization of spectral shapes, physics is in the full spectrum!**

Blast-Wave model fit to spectra

Boltzmann-Gibbs Blast-Wave used to

quantify radial flow

[*E. Schnedermann et al., Phys. Rev. C48 (1993) 2462*]

A simplified hydrodynamic model with 3 free fit parameters,

- T_{kin} = kinetic freeze-out temperature
- ⁻ (*β*_T): transverse radial flow velocity
- n: velocity profile

to describe particle production from a thermalized source + radial flow boost

Simultaneous fit to π , K, p spectra

- $\;$ increase of $\langle\beta_{\mathsf{T}}\rangle$ with centrality in AA
- Xe-Xe and Pb-Pb consistent

Blast-Wave model fit to spectra

Boltzmann-Gibbs Blast-Wave used to

quantify radial flow

[*E. Schnedermann et al., Phys. Rev. C48 (1993) 2462*]

A simplified hydrodynamic model with 3 free fit parameters,

- T_{kin} = kinetic freeze-out temperature
- ⁻ (*β*_T): transverse radial flow velocity
- n: velocity profile

to describe particle production from a thermalized source + radial flow boost

Simultaneous fit to π , K, p spectra

- $\;$ increase of $\langle\beta_{\mathsf{T}}\rangle$ with centrality in AA
- Xe-Xe and Pb-Pb consistent

- in pp and p-Pb, similar evolution with multiplicity
- at similar multiplicity, $\langle \beta_T \rangle$ is larger for smaller systems

Hydro model comparison – Pb-Pb 0-5%

iEbyE + VISHNU + Trento/AMPT: viscous hydro with

different initial conditions *[arXiv:1703.10792v1, PRC 92, (2015) 014903, PRC 92 (2015) 011901(R)]*

McGill: MUSIC viscous hydro with IP-Glasma initial conditions *[PRC 95 (2017) 064913]*

"**Full-hydro**" models reproduce features of particle spectra and ratios **below 2 GeV/***c* **at 20-30% level**

Hydro model comparison – Pb-Pb 0-5%

EPOS-LHC: core (hydro) + corona *[PRC 92 (2015) 034906]* does not reproduce spectra but **qualitatively** captures the spectral **ratios** up to higher p_T

For tested models, agreement **worsens towards peripheral** events / low multiplicity (see backup)

→ **Improvements** are needed to reproduce the evolution with multiplicity, also in view of **extension of hydro description to small systems**

Production mechanisms

Baryon-to-meson ratios are a powerful tool to test production mechanisms and their interplay

- Low- p_T rise described by hydro
- Models where **recombination** involves only soft thermal radially flowing partons consistent with data
- **High-** $p_T p / \pi$ is the same in pp and Pb-Pb collisions

 \rightarrow fragmentation dominates

Role of recombination at intermediate p_T

Behaviour in Xe-Xe confirms observations in Pb-Pb at 5.02 TeV (ratios compared at similar multiplicity)

Pivotal role of the **φ-meson**, that has similar mass as the proton

• the **flatness of the p/φ** ratio is consistent with hydro but can be accommodated by models with recombination

→ Still an **open point** on whether **recombination or flow** determine the spectral shape **at intermediate** p_T

System size evolution of dynamics

Particle ratios in Pb-Pb at 5.02 TeV and Xe-Xe at 5.44 TeV are **consistent** within uncertainties once **compared at the same multiplicity** (and not just centrality percentile)

Evolution with centrality in AA collisions and the shape of the p/π ratio are consistent with the presence of **radial flow** (mass dependence of spectral shapes)

…down to small systems

Across the three systems the baryon-to-meson ratios **evolve with multiplicity** in a qualitatively similar way

Baryon-to-meson – heavy-flavor sector

Heavy flavor baryon-to-meson ratio in small systems similar to lightflavors (Λ/Κ^o_s)

Not reproduced by models (PYTHIA, etc... see backup)

We observe a continuous evolution of spectral shapes and ratios with multiplicity across different systems

In HI hydrodynamics works at low $p_{\text{T,}}$ interplay with recombination at intermediate $\dot{\boldsymbol{p}}_{\textsf{T}}$ is still an **open point**

In small systems, origin of collectivity is still to be understood

Statistical hadronisation model in a nutshell

Thermal fits map heavy-ion collisions to the QCD phase diagram and allow for comparison with lattice-QCD results.

Conventional picture: (ideal) hadron-resonance gas model in chemical equilibrium (based on Grand Canonical ensemble)

$$
n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}.
$$

- Fit to yields: parameters $\mu_{\mathbf{B}}$, $\mathbf{T_{ch}}$, V
- Thermal model fit to yields: *V* cancels out
- Fits based on minimization of χ^2
- Deviations from (GC) equilibrium through empirical under(over)-saturation parameters for strange, charm or light quarks $({\sf Y}_{{\sf s}},{\sf Y}_{{\sf c}}, {\sf Y}_{{\sf q}})$

Thermal model fit to Pb-Pb 2.76 TeV (0-10%)

Production of (most) lightflavour hadrons described $(\chi^2$ /ndf ~ 2) by thermal models with a **single chemical freeze-out** temperature, T_{ch} \approx 156 MeV

Deviation for short-lived K*⁰ resonance Tensions between protons and multi-strange Nuclei included

Figure from *ALICE, Nucl. Phys. A 971 (2018) 1-20* THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 (2011) 142 SHARE: Petran et al, arXiv:1310.5108

Thermal model fit to Pb-Pb 5.02 TeV (0-10%)

New preliminary ALICE data in **0-10% Pb-Pb at 5.02 TeV** can be fitted with a slightly lower temperature, **T ≈ 153 MeV** and higher χ^2 /ndf ~ 4-6

Tensions between protons and multi-strange are **confirmed** at the new energy

Strange particles prefer a higher temperature.

Figure from *ALICE, Nucl. Phys. A 971 (2018) 1-20* THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 (2011) 142 SHARE: Petran et al, arXiv:1310.5108

System size evolution of hadrochemistry

Chemistry is driven by **charged particle multiplicity**, i.e. the size of the system (regardless of its type and √*s*)

 \rightarrow A further test for thermal model will be the fit to the Xe-Xe data, to check dependence on system size of Tch

Resonance suppression in central AA

Short-lived resonance ratios to long-lived particles are **suppressed as centrality increases** in AA collisions

 \blacktriangleright ρ (770)/ π (ρ lifetime = 1.3 fm/c) $\mathsf{K}(892)$ ⁰/**K** (K^{*} lifetime = 4.5 fm/c) $\sqrt{\Lambda(1520)}/\Lambda$ (Λ^* lifetime = 12.5 fm/c) \blacktriangleright **E(1530)/E** (\equiv * lifetime = 22.5 fm/c)

✘ **φ(1020)/K** (φ lifetime = 45 fm/c)

- Re-scattering effects expected to be stronger in central collisions, as the medium is denser and lasts longer
- Depending on the species, regeneration effects might be dominant \rightarrow measure Sigma*!

Resonance suppression in central AA

Short-lived resonance ratios to long-lived particles are **suppressed as centrality increases** in AA collisions

- \blacktriangleright ρ (770)/ π (ρ lifetime = 1.3 fm/c) $\mathsf{K}(892)$ ⁰/**K** (K^{*} lifetime = 4.5 fm/c) \blacktriangleright Λ (1520)/ Λ (Λ^* lifetime = 12.5 fm/c) \blacktriangleright \equiv (1530)/ \equiv (\equiv * lifetime = 22.5 fm/c)
- ✘ **φ(1020)/K** (φ lifetime = 45 fm/c)
- Re-scattering effects expected to be stronger in central collisions, as the medium is denser and lasts longer
- Depending on the species, regeneration effects might be dominant \rightarrow measure Sigma*!

In thermal fits, differences between protons and strangeness sector observed at 2.76 TeV are confirmed at 5.02 TeV

Entering an era of precision tests for thermal model(s)

Important role of the hadronic phase for resonances. Is there more to the story (baryon annihilation for p)?

(Anti-)nuclei production

2 main models give predictions consistent in order of magnitude but based on different parameters:

Thermal production at chemical freeze-out/phase boundary

• Key parameters are mass and chemical freeze-out temperature:

 $dN/dy \sim exp(-m/T_{ch})$

• Model provides yields but no p_T spectra (no dynamics)

Coalescence of nucleons at kinetic freeze-out

- Key parameters are nuclear wave functions, size of the (hyper)nucleus
- Production probability quantified by **coalescence parameter** B_A
- "Simple" coalescence model limited -- **source size to be included** in modeling
- Model provides spectra

$$
E_i \frac{d^3 N_i}{dp_i^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A
$$

Key measurements: multiplicity-dependence of nuclei with different sizes relative to the system size *[F. Bellini, A. Kalweit, in preparation]*

Nuclei are rare objects

Α

Deuteron flows in AA

Deuterons develop v₂, surviving in the fireball despite their low binding energy $(B_E \sim 2.2 \text{ MeV})$

→ Proposed deuteron as "6-quarks bag" formed thermally *(A. Andronic et al.)*

Simple coalescence fails in reproducing the deuteron B_2 and v_2

Nuclei production across collision systems

Smooth evolution of d/p ratio across systems and no significant $\sqrt{s_{NN}}$ dependence at $\mu_{\rm B} = 0$

*B*₂ decrease with centrality in Pb-Pb is explained as an increase in the source volume (in "full" coalescence models, e.g. Scheibl-Heinz, Sato-Yazaki, Nagle, …)

Many new results in the nuclei sector at the LHC contribute to the systematic study of production mechanisms

Key measurements: multiplicitydependence of nuclei with different sizes relative to the system size to probe coalescence vs thermal production
Strangeness production

Enhancement of strangeness from low to high multiplicity pp, p-Pb collisions, until saturation in Pb-Pb [ALICE, *Nat. Phys. 13, 535–539 (2017)*]

 \rightarrow confirmed with new data from LHC Run II

Ongoing efforts to explain behavior with models

- Lund string, color ropes (PYTHIA, DIPSY)
- core-corona (EPOS-LHC)
- thermal-statistical (canonical suppression) *[V. Vislavicius, A. Kalweit, aXiv:1610.03001]*
	- Conventional pp generators successful, with $MPI + CR$ generating some collectivity, but now cracks.
	- Need new framework for baryon production.

T. Sjostrand, Quark Matter 2018

Strangeness canonical suppression

strangeness enhancement is a result of the **canonical suppression** of strangeness production **in small systems** due to the explicit **conservation** of the **strangeness** quantum number in a finite system

First comparisons to model calculations based on THERMUS code

 \rightarrow agreement with data within uncertainties, **except for φ** meson (also "immune" to canonical suppression)

The special role of φ meson

As a s-sbar pair (S=0) with the same mass as the proton, the ϕ meson is "special" → **Does φ behave like a S=0 or S=2 particle?**

- Indications of increase of ϕ/π ratio with multiplicity in small systems
- Flat Ξ/φ for multiplicities between ~6 and ~700? Or slightly increasing in pp, p-Pb vs multiplicity?

→ **Need more precision from experiment!**

System size evolution of hadrochemistry

Particle composition evolves smoothly across collision systems, depending on charged particle multiplicity.

Common origin in all systems?

For MC generators, work is still needed to reproduce evolution with system size in view of a unified description of all collision systems

Collectivity but no jet quenching?

Similarities are observed for flow
observables between **peripheral**
Pb-Pb and high multiplicity p-Pb observables between **peripheral Pb-Pb and high multiplicity p-Pb** collisions.

New and more precise measurements from ALL experiments on nuclear modification factors.

In (minimum bias) **p-Pb**, no suppression at high- p_T is observed, contrary to **peripheral Pb-Pb.**

→ *Do we understand this?*

ALICE, arXiv:1802.09145

Nuclear modification in very peripheral collisions

New measurement in very fine centrality bins!

Strong change of behaviour of R_{AA} beyond 80% centrality

Nuclear modification in very peripheral collisions

New measurement in very fine centrality bins!

Strong change of behaviour of R_{AA} beyond 80% centrality

 \rightarrow reproduced by HG-PYTHIA with **biases** in event selection and collision geometry, and no nuclear modification.

Considering this, the jet quenching signal is smaller than typical systematics above ~80% centrality → **consistent with** R _{pPb}

Conclusions and outlook

Continuity in chemistry and dynamics across collision systems (dependence on charged particle **multiplicity**) is observed.

pp, p-nucleus collisions are much more than a "reference" for heavy-ion collisions

MC generators can generate collective-like behaviour but **fail in the details** of hadron (baryon) production as a function of multiplicity.

Absence of jet-quenching in small systems remains as the main **challenge to the final-state effect interpretation**.

Origin of collectivity in small systems is still **to be understood**.

STRANGENESS

Strangeness from the HI perspective

- \sim 300 MeV are enough to create an \overline{s} pair^[1] (even less if $m_{\rm s}^{\rm \; QCD}$ \rightarrow $m_{\rm s}^{\rm \; Higgs}$ by restoration of chiral symmetry in the QGP phase)
- Strange quarks are dominantly produced by (thermalised^[2]) gluon fusion in QGP
- Strangeness enhacement wrt pp collisions historically proposed as signature for a deconfined QGP[3]
- pp collisions as reference

[1] PDG group, Chin. Phys. C38 (2014) 090001 [2] E. Shuryak, Phys. Rev. Lett. 68 (1992) 3270 [3] J. Rafelski and B. Muller, PRL 48 (1982) 1066

Strangeness from the pp perspective

• Producing strangeness is "expensive" \rightarrow threshold problem

E.g. in a hadron gas $\pi + \pi \rightarrow \pi + \pi + \Lambda + \Lambda$ -bar, $E_{th} \sim 2200$ MeV

- Measurements of strange hadron production used as input for tuning Monte Carlo generators
- Contribute to the understanding of the rich structure of the underlying event arising from MPI in pp, p-Pb collisions

Strangeness production in QGP

- \sim 300 MeV are enough to create an s-sbar $pair$ (even less if $m_{s}^{QCD} \rightarrow m_{s}^{Higgs}$ by restoration of chiral symmetry)
- gluon fusion (a) is the dominant mechanism for strangeness production over quark annihilation (b)
	- Gluons quickly thermalise in t < 1 fm/*c [E. Shuryak, Phys. Rev. Lett. 68 (1992) 3270]*
- The backward reaction of (b) depends on the s quark density, thus on the QGP lifetime \rightarrow saturation of strangeness abundance
- After hadronisation, the abundance of (multi)strange hadrons reflects that of strangeness in the partonic phase
	- If the hadronic phase is short enough to avoid re-diffusion
	-

to baryon-number abundance in the plasma for various

Strangeness enhancement in pp

No increase for p/π is observed **Hierarchy** of the increase associated **with the strangeness content**

What's next?

① *Does strangeness keep increasing with multiplicity or saturate?* High multiplicity-triggered data sample in pp

13 TeV (2016, 2017) being analysed

Measure in p-Pb at 8.16 TeV, Xe-Xe at 5.44 TeV, more differential in peripheral Pb-Pb collisions (2018)

What's next?

②*Can we relate high multiplicity with soft- or hard-QCD dominated processes?* Use event shapes as tools to select jetty/isotropic events in high multiplicity pp

②*Can the ϕ meson provide further insights on strangeness production vs multiplicity?* Measure more differential (event shapes?), extract ϕ/π, improve precision

③*New observables…*

COLLECTIVITY IN SMALL SYSTEMS

Collectivity (in short)

"Loose" definition: correlations of (more than 2) particles across rapidity due to a common source

Origin of collectivity:

- **Initial state** correlations \rightarrow among hadrons in the final state arise from momentum correlations at partonic level [gluon saturation, CGC]
- **Final state** correlations \rightarrow anisotropies and correlations in space converted into anisotropies in momentum space, e.g. via hydrodynamic flow [established in Pb-Pb collisions]

Flow in heavy-ion collisions

$$
E\frac{\mathrm{d}^3N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2N}{p_{\rm T} \mathrm{d}p_{\rm T} \mathrm{d}y} (1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]),
$$

Characteristic features:

- Multiplicity dependence
- Higher harmonics azimuthal flow
- Mass scaling of v_2
- Correlations between harmonics

The hallmarks of flow in AA collisions

Increase in mean p_T with increasing centrality \rightarrow Push from radial flow affects low p_T part of spectra

Baryon-to-meson ratios (with Δm) \rightarrow sensitive to particle production mechanisms (radial flow at low $p_{\textnormal{\scriptsize T}},$ recombination at mid-p $_\mathsf{T})$

The hallmarks of flow in AA collisions

Centrality / multiplicity dependence \rightarrow reflects the degree of "anisotropy" in the initial geometry of the collision

Non-zero higher-order flow coefficients ("harmonics") \rightarrow sensitivity to fluctuations of initial geometry

The hallmarks of flow in AA collisions

Mass scaling of flow coefficients \rightarrow Expansion under a common velocity field

Correlations between harmonics \rightarrow Sensitivity to fluctuations in initial geometry (v₂, v₃) and mediumtransport properties (*v*₂, *v*₄)

Signs of collectivity in small systems

Signs of collectivity in **small systems** "discovered" at the LHC in terms of long-range (2 < $|\Delta \eta|$ < 4) near-side ($\Delta \phi = 0$) "ridge" in 2-particle correlations, visible in **high multiplicity** pp, p-Pb, Pb-p collisions

Are these long-range correlations coming from (hydrodynamic) flow?

 \rightarrow Investigated with new measurements with run 2 data, new analysis techniques

The challenge of removing "non-flow"

- In **small systems** the contribution of **non-flow** cannot be neglected:
- Different contribution from jets
- Larger fluctuations in the number of particle sources
- A word of **caution**:
- Sensitivity to the event class definitions used in analysis *[ATLAS, EPJ C (2017) 77-428]*
- Sensitivity to strategy for nonflow background subtraction

Non-flow subtraction / suppression is a delicate business in pp, p-Pb! Big effort ongoing in defining "smart" observables / new techniques

If collectivity, it involves more than 2 particles

Measure elliptic flow v_2 using correlations among *k* particles in a single event, subtracting correlations from smaller number of particles *[A. Bilanzic et al., PRC 83 (2011) 044913]*

If long-range, correlations stay across sub-events

True collectivity in small systems!

 v_2 {4} $\approx v_2$ {6} $\approx v_2$ {8} \rightarrow true collectivity (even) in **smallest systems** *v***2 {2} larger** → **residual "non-flow"**

Light-flavor particle $v₂$

Heavy-flavor particle v_2 in p-Pb

ADDITIONAL SLIDES

 $R_{\Lambda\Lambda}$ in Pb-Pb and Xe-Xe

R_{AA} in Xe-Xe and Pb-Pb consistent if compared at similar charged particle multiplicity

Identified particle production in |*y*|<0.5

Probing the hadronic phase with resonances

Key measurements:

- Resonance yields and **ratios to long-lived particles vs. centrality**
	- Re-scattering effects expected to be stronger in central collisions, as the medium is denser and lasts longer
	- Depending on the species, regeneration effects might be dominant (e.g. $Σ^*$)
- Spectra **down to low** p_T
	- Improve precision on the yields by minimising the extrapolated fraction
	- UrQMD predicts the largest effects for $p_T < 2$ GeV/*c*

SHARE fit – Pb-Pb 5.02 TeV (0-10%)

SHARE: M. Petran et al.. PRC88 (2013) 3, 034907

Hydro model comparison – semi-central Pb-Pb

Hydro model comparison - peripheral Pb-Pb

Blast-Wave fits to particle spectra

Boltzmann-Gibbs Blast-Wave model [E. Schnedermann et al., Phys. Rev. C48 (1993) 2462] A simplified hydrodynamic model with 3 free fit parameters:

- β _T: transverse radial flow velocity
- T_{kin} = kinetic freeze-out temperature
- n: velocity profile

Blast-Wave fits - Pb-Pb

Caveats:

- Sensitivity to fit range: low p_T particle spectra affected by resonance decay in the hadronic phase

- Sensitivity to the set of particles included in the fit

 Λ , Ξ , Ω , Φ compared to prediction obtained from fit parameters resulting from π , K, p (gray bands indicate range in which fit works ok in Pb-Pb 2.76 TeV)

Blast-Wave fits - Xe-Xe

 1.4 data / BW-fit Fit range 1.3 1.2 1.1 1 0.9 0.8 0.7 **ALICE Preliminary, Xe-Xe \SNN = 5.44 TeV** 0.6 $-0.5%$ $-5-10%$ $-10-20%$ π + π ⁻ 0.5 $-70-90%$ $-30-40%$ 50-60% 0.4 0.8 $p_{\rm T}^{\rm 1}\left({\rm GeV}/c\right)^{\rm 1.2}$ 0.4 0.6 0.2 ALI-PREL-155927

$v₂$ of identified hadrons in Pb-Pb 5.02 TeV

[arXiv:1805.04390](https://arxiv.org/abs/1805.04390)

Light-flavor particle v_2

Clear **mass ordering** at low p_T in p-Pb from new results on v_2 ^{sub} for identified hadrons

 \rightarrow Consistent with hydrodynamics (and AA)

BUT it could also be due to other effects

- Initial stage effects (CGC + PYTHIA)
- Parton escape (AMPT)
- Hadronic rescattering (UrQMD)

Is mass ordering no longer an exclusive product of hydrodynamic flow?

CGC + Pythia

CGC meets Lund String fragmentation of PYTHIA

$CGC + PYTHIA$: A new approach to simulate $p+p & p+A$ collisions

- 1) Output distribution of Gluons from CGC based **IP-Glasma** model
- 2) Sample gluons in momentum space
- 3) Connect the gluons close in phase space to color neutral strings
- 4) Input to PYTHIA and fragment into final particles

 $PYTHIA$ (realistic mechanism of hadronization) \rightarrow partonic correlations from initial state dynamics \rightarrow correlated production of final-state particles

P. Tribedy, Quark Matter 2018, Venice, Italy

Bayesian analysis, Pb-Pb and Xe-Xe

Comparison to Bayesian analysis

Mean p_T **and integrated yields** in Pb-Pb at 2.76 TeV are used as input to a multiparameter **Bayesian analysis** to extract predictions for 5.02 TeV *[G. Bernhardt et al., NPA 967 (2017) 293–296]*

Comparison with ALICE results at 5 TeV indicate that

- the K/π ratio is reproduced in most central collisions, but description fails in peripheral
- p/π and mean transverse momenta overestimated, trend with multiplicity described qualitatively \rightarrow model improvements since 2017

Lc/D ratio in small systems vs MC

The ALICE detector at the LHC

Particle identification in ALICE

all known PID techniques in 0.1 GeV/c p_T < 30 GeV/c