Di-lepton flow in CMS

KiSoo Lee(Korea University) for the CMS collaboration

2018_5_25_HIM

Contents

- 1. Flow
- 2. CMS detector
- 3. Correlation
- 3. J/ ψ flow in pPb
- 4. Status and future plan of Y flow

Particle anisotropy

- Participants of the collision are distributed in an almond shape region
- Due to the length and pressure difference, spatial anisotropy converted into a momentum anisotropy
- Quarkonia are expected to carry out information on the initial state and the medium effects

Flow

- Flow: Collective motion of particles superimposed on top of the thermal motion
- Use Fourier harmonics to express flow

$$E\frac{d^2N}{d^3\overrightarrow{p}} = \frac{dN}{p_T dp_T d\phi dy} = \frac{1}{2\pi} \frac{dN}{p_T dp_T dy} \left[1 + \sum_{n=1}^{\infty} 2v_n (p_T, y) \cos(n\phi) \right]$$

Flow components

- v₁: directed flow
 - driven by pressure gradient
- v₂: elliptic flow
- driven by spatial anisotropy
- v₃: triangular flow
 - driven by initial fluctuation

CMS detector

Calorimeters (Electromagnetic & Hadron)

Motivation of quarkonia flow

- Elliptic flow of di-muon(J/ψ) is different from that of hadron
- Y flow is not measured before
- Hadron elliptic flow is different at small
- pPb run provide baseline for PbPb
- How about quarkonia?

J/ψ kinematic range

- Forward (1.4 < $|y_{lab}|$ < 2.4) region is used to reach low p_T
- Efficiency 30~40 % can be achieved at low p_T(< 3 GeV) for forward rapidity

non-prompt rejection

- J/ ψ coming from B meson are identified by the secondary vertex displaced from the primary vertex
- Non-prompt J/ $\!\psi$ are separated by cutting on pseudo-proper decay length

J/ψ reconstruction

- J/ψ candidate correlated with hadron within each mass bin

Correlation method

• $\Delta \eta$, $\Delta \phi$ between trigger particle and charged tracks(associator particle) denote correlation

$d\phi$ projection

- Long-range projection($|\Delta \eta| > 1$ for pPb J/ ψ) to reject jet
- + d ϕ distribution is fitted by Fourier harmonics to achieve flow

vn extraction

•

Low-multiplicity subtraction

Non-flow component is removed by low-multiplicity subtraction

Result

- Clear observation of v_2 signal for charm quark at pPb 8 TeV
- Different trend in species dependence from PbPb
- Better precision data needed

$\Upsilon(1S)$ flow in pPb

twoCB

- Y flow is not measured yet
- About 40,000 Y(1S) yield observed in pPb 8 TeV
- Expected to give upper limit on the Y(1S) v_2

Y(1S) flow in PbPb

• Planning to achieve Y(1S) v_2 in PbPb 5 TeV with run 2018

17 🧧

Back up

Sys. from Bkg PDF

Default: exponential

Variations:

- Linear
- 2nd polynomial
- 3rd polynomial

Sys. from Eff. correction

2018_5_25_HIM

Sys. from non-prompt rejection

Loosening I^{3D} cut to double the amount of residual NP J/ Ψ

EventPlane method

azimuthal anisotropy can be described using Fourier series

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)] \right)$$

 Ψ_R : angle of reaction plane

EventPlane Flattening

$$\Psi_{2} = \Psi_{2}' \left(1 + \sum_{j}^{j_{max}} \frac{1}{j} \left(- \left\langle sin(2j\Psi_{2}') \right\rangle cos(2j\Psi_{2}') + \left\langle cos(2j\Psi_{2}') \right\rangle sin(2j\Psi_{2}') \right) \right)$$

2018_5_25_HIM

