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Motivation for PID in jets
I Baryon-to-meson ratio is enhanced in A–A and p–A collisions (RHIC, LHC).
I This phenomenon cannot be explained by fragmentation in vacuum.
I What is the effect of QGP on hadronization mechanism(s) in jets?
I What are the mechanisms (parton recombination)?
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Comparison of data with models
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Motivation for PID in jets
We aim to understand the origin(s) of the Λ/K0

S enhancement by separating
hadrons produced in hard processes (jets) from hadrons produced in soft processes
(underlying event).

Is the baryon-to-meson ratio enhanced
due to the collective effects in the plasma
(parton recombination, radial flow,. . . )
or is it (also) due to a modification of
the jet fragmentation in the medium?

I jet fragmentation
A high-pT parton from hard
scattering fragments into hadrons.

I parton recombination
Multiple partons cluster together to
form a hadron.
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ALICE
I collisions studied: p–p at

√
s = 7TeV, p–Pb at √sNN = 5.02TeV, Pb–Pb at√sNN = 2.76TeV

I tracking of charged particles by ITS & TPC in magnetic field of 0.5T
I centrality estimated from the multiplicity of charged particles in the detectors

at forward and backward pseudorapidities
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Analysis of charged jets

I track selection
I charged primary particles
I ptrack

T > 150MeV/c
I uniform in φ× η, |ηtrack| < 0.9

I raw-jet reconstruction
I anti-kt algorithm
I resolution parameter R = 0.2, (0.3, 0.4)

I subtraction of average soft background
I average background density ρ estimated from the median kt cluster
I pjet,ch,corr

T = pjet,ch,raw
T − ρAjet,ch, (where Ajet,ch is jet area)

I signal-jet selection (good candidates for hard scattering)
I pT

leading track > 5GeV/c (only Pb–Pb)
I Ajet,ch > 0.6πR2

I further pjet,ch
T corrections

I background anisotropy (intra-event pT fluctuations)
I detector response
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Jet spectra

R = 0.2
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R = 0.3
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Larger R ⇒ harder spectrum (but softer jets at a given pjet
T ).
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Analysis of neutral strange particles

Strange neutral particles decaying into
two charged daughter particles

I meson K0
S → π+ + π− (BR 69%)

I baryon Λ→ p + π− (BR 64%)
Mother V0 particle reconstructed using
topology of its V-shaped decay.
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Strange particles in jets

Analysis steps
I V0 candidate selection
I candidate–jet matching (V0s in jet cones)√

(φV0 − φjet,ch)2 + (ηV0 − ηjet,ch)2 < R,

|ηjet,ch|max < |ηV0 |max − R
I candidate–UE matching (V0s in events without

selected jets with pjet,ch
T > 5GeV/c)

I signal extraction (invariant-mass distribution)
I efficiency correction (in jet cones, in UE)
I subtraction of V0s in UE
I subtraction of V0s coming from decays of jet

constituents (Ξ→ Λ), i.e. “feed-down” correction
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Estimation of V0s in the underlying event
I no-jet events: V0s in events with no selected jets
I outside cones: V0s outside jet cones
I random cones: V0s in a randomly oriented cone
I median-cluster cones: V0s in the cone of the median kt-cluster
I perpendicular cones: V0s in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.
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Reconstruction efficiency of V0 particles
I Reconstruction efficiency depends strongly on pV0

T and ηV0 .
I Shape of the measured ηV0 distribution depends on the selection criteria.
I Not enough statistics to apply efficiency correction in 2D (pV0

T × ηV0).
⇒ Efficiency of inclusive V0s is scaled (in 2D) to get efficiency in jet cones and
UE (in 1D).
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Feed-down in jets

Feed-down fraction of Λ in jets estimated from:
I inclusive Λ (Pb–Pb-like),
I jets generated by PYTHIA 8 (p–p-like).
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Estimation of systematic uncertainties

The systematic uncertainties are studied for the following sources:
I reconstruction efficiency of V0s (selection cuts applied on V0 candidates),
I signal extraction (fitting parameters),
I subtraction of spectra of V0s in UE (5 methods),
I subtraction of feed-down in jets (inclusive vs PYTHIA),
I material budget (detector model),
I fluctuations of UE (jet embedding).
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Open issue: Λ–Λ asymmetry
Discrepancy between inclusive spectra of Λ and Λ.
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Strong dependence on the polarity of magnetic field and the sign of η.
Additional 6% (symmetric) considered as systematics.
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Open issue: discrepancy in MC between runs 2010, 2011

Differences in spectra traced back to the reconstruction efficiencies.
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Systematics: combined
R = 0.2, pjet,ch

T > 10GeV/c, (Λ+ Λ)/2K0
S

)c (GeV/h
T

p
0 2 4 6 8 10 12

 1− 
de

fa
ul

t
/y

va
r

y

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

: relative differencesS
0/KΛ

2011-vs-2010
UE
efficiency
material-budget
L-vs-aL
signal-extraction
total

Uncertainties from different sources (except feed-down) are combined in squares
and considered symmetric.

16 / 23



V0 vertexer problem
I There may be two candidates for

the point of closest approach
(“cowboy/sailor” configuration).

I Old vertexer: sailor misidentified as cowboy → CPA ≈ −1→ rejected.
I New vertexer: Select the point with the smallest DCA calculated in 3D.

Old New

I ⇒ Better MC–real data matching.
I Cause of loosing sailors with the old vertexer still unclear.
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Λ/K0
S ratio in jets in p–p at

√
s = 7TeV and 13TeV

)c (GeV/
T

p
0 2 4 6 8 10 12

0 S
)/

2
K

Λ
+

Λ(

0

0.5

1

0
Inclusive V

 in UE
0

V

, jet) < 0.2
0

(VR in jets 
0

V

, jet) < 0.4
0

(VR in jets 
0

V

 = 7 TeVsALICE pp ALICE Preliminary

 = 0.4 and 0.2jetR, tkJet: anti-

| < 0.35
jet

η,  |c > 10 GeV/
jet, ch

T
p

| < 0.75
0V

η|

ALI-PREL-113813

(GeV/c)
T

p
0 2 4 6 8 10 12

S0
)/

2
K

Λ
 +

 
Λ(

0

0.2

0.4

0.6

0.8

1

1.2 ALICE Preliminary = 13 TeVsALICE pp 

 = 0.4R, TkJet: Anti

| < 0.35
jet

η, |c > 10 GeV/ch

T, jet
p

, jet) < 0.4
0

(VR∆| < 0.75, 
0

V
η|

0
Inclusive V

 in JE
0

V

 in UE
0

V

Sys.Error

ALI−PREL−148657

I The ratio in UE is consistent with the inclusive ratio.
I The ratio in jets is clearly different from the inclusive ratio at low and

intermediate pV0

T .
I A slight increase of the ratio in jets with increasing R.
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Λ/K0
S ratio in jets in p–Pb at √sNN = 5.02TeV

(high-multiplicity collisions, 0–10%)
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The ratio in jets
I is clearly different from the inclusive ratio at low and intermediate pV0

T ,
I is different from the inclusive ratio in PYTHIA (black line),
I is similar to the ratios in PYTHIA jets (red dashed lines),
I shows no significant dependence on pjet,ch

T and a slight dependence on R.
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Λ/K0
S ratio in jets in Pb–Pb at √sNN = 2.76TeV

(7.4× 106 central collisions, 0–10%)
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The ratio in jets
I is clearly different from the inclusive ratio at low and intermediate pV0

T ,
I shows no significant dependence on pjet,ch

T ,
I is consistent with the ratio in jets in p–Pb and p–p at pV0

T > 4GeV/c.
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K0
S, Λ spectra in jets in Pb–Pb

comparison to PYTHIA smeared with pjet,ch
T fluctuations
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I Same slopes of spectra from measurement and from PYTHIA.
I Enhancement for Λ at pV0

T < 4GeV/c.
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Summary and outlook
ALICE has performed the first measurement of the Λ/K0

S ratio in charged jets in
p–p, p–Pb and Pb–Pb collisions at the LHC.

Results
I In every collision system, the Λ/K0

S ratio in jets is significantly smaller than
the inclusive ratio (and the UE).

I The Λ/K0
S ratios in jets are consistent within uncertainties in all collision

systems for pV0

T > 4GeV/c.
I The dominant source of the enhancement are soft processes associated with

collective behaviour.
I A potential modification of jet fragmentation seems to be restricted to the

region pV0

T < 4GeV/c and manifest by an enhancement of the Λ yields.

Outlook
I Solve the 2011/2010 issue.
I Comparison with more models (JEWEL).
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Thank you for your attention.
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Backup
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p/π ratio in Au–Au at √sNN = 200GeV
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Ξ/Λ ratio in jets in p–p at √sNN = 13TeV
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Details on the Λ/Λ discrepancy
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V0 candidate selection

Cut variable Value
Daughter tracks
TPC refit true
type of production vertex not kKink
DCA to the primary vertex ≥ 0.1 cm
DCA between daughters ≤ 1σTPC
|η| ≤ 0.8
V0 candidate
reconstruction method offline
cosine of the pointing angle (CPA) ≥ 0.998
radius of the decay vertex 5–100 cm
|η| ≤ 0.7
transverse proper lifetime ≤ 5τ
Armenteros–Podolanski cut (K0

S) pT
Arm. ≥ 0.2|αArm.|
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Jet algorithms
A sequential recombination jet finder is defined according to this general scheme:
1. ∀ i , j : calculate distances dij and diB (NB kt ≡ pT):

dij = min
(

k2p
t,i , k

2p
t,j

)
Δ

2
ij

R2 , Δ
2
ij = (yi − yj)2 + (φi − φj)2 , diB = k2p

t,i

2. Find dmin:
dmin = min (dij , diB) .

I If ∃ i , j : dmin = dij , merge particles i and j into a single particle and combine
their momenta.

I If ∃ i : dmin = diB, declare particle i to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

p =

 1 kt (background estimation)
0 Cambridge/Aachen
−1 anti-kt (signal jets)

Matteo Cacciari et al. JHEP 0804 (2008) 063
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Background in Pb–Pb
Production of soft particles by underlying-event processes.
average background density ρ:

I kt jets w/o 2 hardest

each event: ρ = median
{

pjet
T /Ajet

}
each jet: pcorrected

T,jet = praw
T,jet − ρAjet

input

raw
N

0 1000 2000 3000

 (
G

e
V

/c
)

ρ

0

100

200

1

10

210

3
10

410

5
10

6
10

 = 0.15 GeV/c)min

t
 (p

t
FastJet k

raw

input
 N×0.0002) GeV/c ±0.3) GeV/c + (0.0623±Fit: (-3.3

entries
0 20000

150

25000

20000

e
n

tr
ie

s

 = 2.76 TeVsPb-Pb 

0-10%

0-10%

ALI-PUB-13222

ALICE, JHEP 1203 (2012) 053

ρ anisotropy in events (fluctuations):
I δpT = praw

T,probe − ρAprobe

I response matrix → deconvolution

 (GeV/c)
t

chpδ
-50 0 50 100

p
ro

b
a

b
il
it

y
 d

e
n

s
it

y

-610

-510

-410

-310

-210

-110

1
random cones  = 11.0σ = 9.7, LHSσ =  0.0, LHS

RC (w/o lead. jet)  = 10.1σ

φηRC randomized  = 8.6σ = 8.0, LHSσ = -0.9, LHS

 = 1.4 c/GeV
b

 = 144.3, ap: aΓf

t

Pb-Pb: 0-10%

R = 0.4 

p    = 0.15 GeV/cmin

t

μ

μ

ALI-PUB-13226

ibid.
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Scaling of the reconstruction efficiency
I ε — reconstruction efficiency of inclusive particles
I εs — reconstruction efficiency of particles of interest (scaled ε)
I as — yield of associated particles of interest
I gs — yield of generated particles of interest
I m — uncorrected yield of measured particles (candidates) of interest
I t — yield of true (corrected) particles of interest
I P — signal purity

Signal extraction in JC, UE (assume that Pinclusive(pV0

T , ηV0) is the same as for V0s
of interest):

m(pV0

T , ηV0) = mraw(pV0

T , ηV0)|peak region · Pinclusive(pV0

T , ηV0)|peak region

Efficiency calculation:

as ≡ m, σas ≡ 0, gs = as/ε

1
εs(pV0

T )
=
∑
ηV0 i

gs(ηV0 i , pV0

T )∑
ηV0 j

as(ηV0 j , pV0

T )
=
∑
ηV0 i

as(ηV0 i , pV0

T )∑
ηV0 j

as(ηV0 j , pV0

T )
1

ε(ηV0 i , pV0

T )

Spectra correction:
t = m/εs
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