Quarkonium measurement in pp, pPb and PbPb collisions at 5.02 TeV with CMS

JaeBeom Park, Korea University

Motivation

- Quarkonium : Bound states of one quark and its anti quark
 - One of the most important probes in heavy ion collisions

Motivation

- Quarkonium : Bound states of one quark and its anti quark
 - Produced by hard scattering at the early stage in the collision

 $\tau_{\text{formation}}(q\bar{q}) < \tau_{\text{formation}}(QGP) < \tau_{\text{life}}(QGP) < \tau_{\text{life}}(q\bar{q})$

Quarkonia in HI CMS

Charmonia

- R_{AA} J/ψ in PbPb at 2.76 TeV
 [EPJC 77 (2017) 252]
- Double Ratio in PbPb at 2.76 TeV
 [PRL 113 (2014) 262301]
- J/ψ in pPb at 5.02 TeV
 [EPJC 77 (2017) 269]
 Run 1
- ψ(2S) in pPb at 5.02 TeV

 [arXiv:1805.02248]
 [Submitted to PLB last week]

Run 2

- Double Ratio in PbPb at 5.02 TeV [PRL 118 (2017) 162301]
- R_{AA} charmonia in PbPb at 5.02 TeV
 [arXiv:1712.08959] [Submitted to EPJC]

Bottomonia

- Double ratio of Y(nS) in PbPb at 2.76 TeV [PRL 107 (2011) 052302]
- R_{AA} of Y(nS) in PbPb at 2.76 TeV
 [PLB 770, 357(2017)]
- Single & Double Ratio in pPb at 5.02 TeV
 [JHEP 04 (2014) 103]

Run 2

- Double Ratio in PbPb at 5.02 TeV
 [PRL 120 (2018) 142301]
- R_{AA} of Y(nS) in PbPb at 5.02 TeV
 [arXiv:1805.09215]
 [Submitted to PLB yesterday]

- Prompt J/ ψ : Nuclear effects on quarkonium production
- Nonprompt J/ ψ : Information on open heavy flavor (b-quark)

Outline

- Quarkonia in PbPb collision
 - Charmonia
 - Bottomonia
- Quarkonia in pPb collision
 - Charmonia
 - Bottomonia
- Summary

Outline

- Quarkonia in PbPb collision
 - Charmonia
 - Bottomonia
- Quarkonia in pPb collision
 - Charmonia
 - Bottomonia

Regeneration of J/ψ in PbPb

- Larger suppression in RHIC than ALICE
- J/ ψ regeneration in low p_T?

*p*_т (GeV/*c*)

1.4 Prompt J/ ψ

|y| < 2.4

HIM

Ч

PbPb 368 (<30%) / 464 (>30%) µb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV)

CMS

STAR preliminary

Larger suppression with CMS compared to STAR

No strong $\sqrt{s_{NN}}$ dependence

•

10

5.02 TeV : <u>arXiv:1712.08959</u> 2.76 TeV : <u>EPJC 77 (2017) 252</u>

- Compatible trend at low p_T with ALICE
- No strong √s_{NN} dependence

•

11

HIM

CMS

•

KOREA

5.02 TeV : arXiv:1712.08959 2.76 TeV : EPJC 77 (2017) 252

25 May 2018

5.02 TeV forward lyl

- Compatible trend at low p_T with ALICE
- No strong $\sqrt{s_{NN}}$ dependence
- Less prompt J/ψ suppression at low pT

ψ(2S) in PbPb

arXiv:1712.08959

- Larger suppression of J/ψ for all centrality and p_T bins
- $\psi(2S)$ is suppressed in all centrality events
- no clear p_T dependence of $\psi(2S)$
- $\psi(2S)$ still suppressed in high p_T region

ATLAS vs CMS

Indication of increasing R_{AA} vs p_T for J/ ψ

Sequential suppression across p_T and cent. bins

KOREA

What about bottomonia?

RHIC vs LHC Y(1S)

- Compatible with CMS and STAR data for Y(1S)
- CNM + Regeneration effect?

HIM

RHIC vs LHC excited states

- Indication of more suppression for excited states at LHC
- Sequential suppression for both STAR and CMS data
- What about 5.02 TeV? feed down component?

Y(nS) in PbPb 5.02 TeV

arXiv:1805.09215

- Large suppression of Y(1S), Y(2S) and Y(3S)
- No visible peak of Y(3S) in given statistics

Y(nS) in PbPb 2.76 vs 5.02 TeV

- Sequential suppression for Upsilons in both 2.76 & 5.02 TeV
- More precise measurement of Y(2S) in peripheral events at 5.02 TeV
- Y(3S) suppressed in all centrality bins

Y(nS) in PbPb 2.76 vs 5.02 TeV

- Sequential suppression for Upsilons in both 2.76 & 5.02 TeV
- More precise measurement of Y(2S) in peripheral events at 5.02 TeV
- Y(3S) suppressed in all centrality bins

Y(nS) in PbPb 2.76 vs 5.02 TeV

- Sequential suppression for Upsilons in both 2.76 & 5.02 TeV
- More precise measurement of Y(2S) in peripheral events at 5.02 TeV
- Y(3S) suppressed in all centrality bins

Y(nS) RAA vs p_T , y at 5.02 TeV

arXiv:1805.09215

- No significant dependence in both kinematic variable s
- Sequential suppression of Y mesons

KOREA

Model comparison vs Npart

- Melting temperatures:
 Y(1S, 2S, 3S) : 600, 230, 170 MeV
- No regeneration
- Initial temperature:
 - 2.76 TeV: 544 552 MeV
 - 5.02 TeV: 629 641 MeV (16% increase)
- Y(1S) R_{AA} : ~25% decrease

Du, Rapp

- Melting temperatures:
 Y(1S, 2S, 3S) : 500, 240, 190 MeV
- Including regeneration
- Initial temperature:
 - 2.76 TeV: 520 750 MeV
 - 5.02 TeV: 550 800 MeV (7% increase)
- Y(1S) R_{AA} : slight decrease

HIM

Model comparison vs pr

Krouppa, Strickland

- Strickland et al. calculation : Increasing RAA with pT
 - High β QGP escape before significant modification
- Compatible with data

Du, Rapp

- Rapp et al. calculation
 - : p_T dependent regeneration contribution
 - expect slight increase of Y(1S) from pT zero up to ~10 GeV/c
 - Not visible within uncertainty
- Compatible with data

Model comparison vs y

- CMS data agrees with Strickland et al. perturbative potential
- No strong rapidity dependence up to y=4 including ALICE data

200 GeV vs 2.76 TeV vs 5.02 TeV

- $Y(1S) : R_{AA}(RHIC) \sim R_{AA}(LHC 2.76) \geq R_{AA}(LHC 5.02)$
- Indication of larger suppression for Y(1S) but compatible within unc.
 R_{AA}(2.76) / R_{AA}(5.02) = 1.2 +/- 0.15 (unc.)
- Suppression of direct Y(1S)? Need more input : feed-down, v2 etc.

Summary of 2.76 vs 5.02 TeV

arXiv:1805.09215

- Sequential suppression for both energies
- $Y(1S) : R_{AA}(LHC 2.76) \ge R_{AA}(LHC 5.02)$
- Similar suppression for the excited states at 2.76 & 5.02 TeV
- Model agrees with data for each corresponding energy

Outline

Quarkonia in PbPb collision

- Charmonia
- Bottomonia

Quarkonia in pPb collision

- Charmonia
- Bottomonia

• Summary

J/ψ in pPb

- R_{FB} below 1 at forward low p_T
- Compatible with other experiment data
- Enhanced nuclear effect for increasing central pPb collisions

J/ψ in pPb

- Suppression at forward low p_T
- CMS data above unity in backward region

HIM

J/ψ in pPb

- CMS data :
 - ➡ Decrease in low p_T with toward forward rapidity
 - ➡ Above unity in higher p_T range
- ATLAS data : no strong rapidity dependence observed

HIM

ψ(2S) R_{pPb} in CMS

- Indication of final state effect?
- Co-mover breakup?
- Need input to
 understand CNM effect
 : Flow harmonics etc.

Bottomonia in pPb

25 May 2018

HIM

KOREA

Quarkonium in QM 2018

J/ψ in XeXe 5.44 TeV

arXiv:1805.04383

- Prompt J/ ψ distribution is different in mid and forward rapidity
- PYTHIA does not describe the J/ ψ production in pp
- Prompt J/ ψ less isolated in data

J/ψ in Jets at 5.02 TeV pp

- Fraction of prompt J/ ψ is less than ~1%
- Larger fraction of J/ψ in jets in data than in MC
- In heavy ion collision : May need to link J/ ψ to jet-quenching

KOREA

J/ψ in pPb 2016 data at 5 TeV

ALICE-PUBLIC-2018-007

- 2016 data agrees with sample of 2013
- More precise measurement, reduction of uncertainty
- Suppression at low pT
- No strong dependence on collision centrality

KOREA

HIM

- Strong y dependence between forward and backward
- No strong energy dependence

ALICE_PUBLIC-2017-007

- More suppression toward central collisions at forward rapidity
- Decreasing Q_{pPb} with more central events at backward rapidity
- Compatible with 5.02 TeV results

Forward

Backward

Energy Loss and

Shadowing model

: not able to reproduce J/ψ

modification in central

collisions

Compatible with calculations in peripheral events within uncertainties

$J/\psi \& \psi(2S)$ in pPb at 8 TeV

- Larger suppression of $\psi(2S)$ compared to J/ ψ
- Less suppression with increasing central collisions at backward region
- No strong centrality dependence of $\psi(2S)$ at forward rapidity •

HIM

- Prompt J/ ψ suppression at low pT for both forward and backward
- Nonprompt J/ψ suppressed at
 forward low pT which
 consistent with unity in
 backward rapidity
- Measurement provide constraints on gluon distribution in low-x region

Outline

Quarkonia in PbPb collision

- Charmonia
- Bottomonia

Quarkonia in pPb collision

- Charmonia
- Bottomonia

• Summary

Charmonia in PbPb

- $R_{AA}^{\psi(2S)} < R_{AA}^{J/\psi}$
- Prompt $\psi(2S)$ still suppressed up to 30 GeV/c
- Similar suppression with 2.76 TeV and 5.02 TeV

Bottomonia in PbPb

- Sequential suppression of each Upsilon state
- Larger suppression of Y(1S) at 5.02 TeV but compatible within uncertainty
- Y(1S) : $R_{AA}(RHIC) \sim R_{AA}(LHC 2.76) \geq R_{AA}(LHC 5.02)$

Charmonia in pPb

- Enhanced nuclear matter effects for increasingly central pPb collisions
- Larger suppression of $\psi(2S)$ than J/ ψ
- Possible final state effect?

KOREA

Bottomonia in pPb

HIM

Discussion

Initial temperature:

2.76 TeV: 544 - 552 MeV

5.02 TeV: 629 - 641 MeV (16% increase)

Y(1S) RAA : ~25% decrease

Initial temperature:

2.76 TeV: 520 - 750 MeV

- 5.02 TeV: 550 800 MeV (7% increase)
- Y(1S) RAA : slight decrease
- How can we extract the medium temperature?
- Need additional observable? Excited states? Y v2? ...

Discussion

- Why suppression of excited states for increasing event activity even in pp and pPb?
- Looking forward with all quarkonium including J/ ψ and ψ (2S) with more statistics in pp, pPb and PbPb collisions

Discussion

CMS-PAS-FTR-17-002

- Y(3S) dissociated? Physics or Statistics?
- Way of reducing systematic uncertainty? (correlation b/w global unc.)

Thank you

Charmonia in PbPb

HIM

Charmonia in PbPb

HIM

KOREA

Event Activity

RAA in pt, y

