

Hottest results of open heavy flavor measurements (focused to nuclear modification factors) Hyunchul Kim (Chonnam National University)

HIM 2018-05, May 25th – 26th Chuncheon, Republic of Korea

Scenes of "open heavy flavor movie" in Venice

17 parallel talks + posters (Really Hot!)

Motivation of heavy flavor

- Heavy quark is produced in the early stage of the collisions, can used as the probe to investigate the hot and dense matter
 - light quarks : can be produced in the medium also
 - Electroweak bosons : cannot interact with colored partons in the medium
- With combined light quark, we can check the mass or flavor dependence

Energy loss mechanism

- Kinematics: "Dead cone effect" : gluon radiation is suppressed at angles < quark mass/energy
- E_{loss} in light quarks >
 E_{loss} in heavy quarks
- Suppression of induced radiation at low p_T and the disappearance of this effect at high p_T

Nuclear modification factors $(R_{pA} \text{ or } R_{AA})$

HIM 2018-05 (May 25th-26th, 2018) - Hyunchul Kim

inclusive B meson

- No significant energy dependence
- no y-dependence at 5 TeV, and the results are compatible with the 2.76 TeV
- Measurement down to p_T <3 GeV at forward rapidity

Strong suppression in Pb+Pb collisions, small cold nuclear matter effects

15

B+ meson

- First exclusively reconstructed in heavy-ion collisions
- Suppression of B+ meson production in PbPb collisions
- B+ meson R_{AA} ~ 0.3 to 0.6 with no obvious trend within uncertainty
- Compatible with theory prediction within uncertainty for p_T 10-50 GeV/c
- Necessity for high p_T measurement : distinguishing pQCD vs AdS/CFT base models

B->D pPb

HF electron R_{pPb} at 5.02 and 8.16 TeV

- intervals
- No energy dependence within uncertainties

- 3..... $b (\rightarrow c) \rightarrow e$ ALICE p-Pb, Vs_{NN} = 5.02 TeV, -1.06 < y_{max} < 0.14</p> FONLL + EPS09NLO shad. JHEP 07 Blast wave calculation Sharma et al.: Coherent scattering + CNM energy loss (2017) 🕑 et al.: [ncoherent mu]tiple scattering 052 Model Ref.: check backup 9 10 8 7 p₁ (GeV/c)
- R_{pPb} is compatible with unity in all the p_T Beauty and beauty+charm electron results are compatible within uncertainties
 - Models describe well the R_{pPb}

- 2.76 TeV(0-20% centrality) -> 5.02 TeV(0-10% centrality), energy independent
- hint of a smaller suppression for beauty than charm+beauty decay electrons at the same electron pT
- large contribution to the systematic uncertainties from the rescaled pp cross section
- agreement within the uncertainties with models implementing mass-dependent energy loss

- suppression of non-prompt D production in PbPb collisions
- Compatible with theory prediction that includes both collisional and radiative energy loss (CUJET)
- The model including only collisional energy loss (PHSD), seems to predict a difference behavior compared with other models and data at high-pT

B->D R_{AA} in RHIC

$R_{AA}(b\rightarrow e) \& R_{AA}(c\rightarrow e) in Au+Au 200GeV$

- In 0-10¹/₀, bottom and charm are more clearly separated
- Charm is more suppressed than MB
- 2017/5/15 Bottom is similar

Bonus! – in XeXe

- New R_{AA} measured down to p_T = 0.2 GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

Possible future measurement of total charm cross section in heavy-ion collisions
 Data are reproduced by model calculations

 R_{AA} ~ 0.5 in same p_T range between two systems?

15

Strangeness in B meson

- First reconstructed in heavy-ion collisions
- Indication of less suppression of B_s comparing to B⁺
- Ratio -> correlated uncertainties are cancelled

Preview from LHCb

Open beauty measurements in *p*Pb 8 TeV

Zoo with heavy flavors

VIAY ZUITZUIT, ZU

- Compatible results from three beauty RAA measurements (nonprompt D, B+, and nonprompt J/ψ)
- Beauty seems to separate from charm and light flavor at ~ 20 GeV
- RAA between prompt D, charged particle, B+, nonprompt J/ψ and nonprompt D merging above ~ 20 GeV

B meson (Hyunchul's summary)

- In pPb, nuclear modification factor shows unity within uncertainties
- In PbPb, we can see the suppression, independent of energy, rapidity
- Get hint of strangeness enhancement
- At high p_T, models only with collisional energy loss can't describe data well
- No significant system size dependence?
- Bottom is less suppress than Charm
- LHCb will prepare exclusive B meson measurement in 8.16 TeV pPb

Prompt D meson R_{pA}

- $D_{s}^{+} R_{pPb}$ compatible with D-meson R_{pPb}
- Both compatible with unity
- More stringent constraints to models at low pT

FB

- Forward: 0 < y* < 0.5, Backward: -0.5 < y* < 0 •
- No obvious modification in forward wrt. backward for prompt D •
- Prompt $D \sim \text{Non-prompt } J/\psi$ 0

JHEP 10 (2017) 090

D-meson production central/peri.

D⁰ R_{AA} - RHIC

- R_{AA} in central events < 1 at all p_T
- Suppression at high p⊤ increases with centrality

HIM 2018-05 (May 25th-26th, 2018) - Hyunchul Kim

ALICE, D meson R_{AA}

• Strong suppression of non-strange D meson in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, increasing with centrality

- Similar suppression between $\sqrt{s_{NN}} = 2.76$ TeV and $\sqrt{s_{NN}} = 5.02$ TeV
 - Described by model [1] at two energies -> harder spectra and denser medium counterbalance

ALICE, D meson R_{AA}

- Similar D-meson, π[±] and charged-particle R_{AA} result for p_T > 10 GeV/c in 0-10% and 30-50%, compatible results in 60-80% for p_T > 1 GeV/c
- D-meson R_{AA} larger than that of charged pions at low p_T for 0-10% and 30-50% centrality classes
 - Not straightforward interpretation: N_{part} vs N_{coll} scaling at low p_T, different fragmentation and initial spectra shapes, possible mass and Casimir factor effects, different impact of coalescence and radial flow

CMS, D⁰ meson R_{AA}

27.4 pb⁻¹ (5.02 TeV pp) + 530 μb⁻¹ (5.02 TeV PbPb) R_{AA} CMS 1.6 Djordjevic et al. CUJET 3.0 D0 + D0 Vitev et al. (g=1.9-2.0) 1.4 Cao et al. PHSD w/ shadowing PHSD w/o shadowing 1.2 T_{AA} and lumi. AdS/CFT HH D = const uncertainty AdS/CFT HH D(p) Ч 0.8 0.6 0.4 |y| < 1 0.2 Cent. 0-10% 0 10² 10 p_T (GeV/c)

- Seen increasing trends, going to higher p_T
- Charm quarks lose a significant fraction of energy in the QGP medium
- RAA minimal near pT ~ 10 GeV/c and then increases
- at high pT, both pQCD and Ads/CFT predictions reasonably agree with data
- at low pT, PHSD with shadowing describes our data better

Λ_{c} (udc, 2.29 GeV/c)

$\Lambda_{\rm c}\,$ and Heavy Flavor Hadronization

- Strong enhancement of \c/D⁰ ratio seen in Au+Au collisions by STAR
 - Enhancement predicted from coalescence hadronization
- An enhancement relative to PYTHIA also seen in p+p and p+Pb collisions at LHC

- How does ∧_c production change from peripheral to central A+A collisions?
- What is the p_T dependence of Λ_c production in A+A collisions?

Sooraj Radhakrishnan

p⊤ Dependence of ∧_c/D⁰ Ratio

Ko: Phys.Rev.C 79 (2009) 044905 Greco: Eur.Phys.J.C (2018) 78:348 SHM: Phys.Rev.C 79 (2009) 044905

- Strong enhancement of $\Lambda_{\!\rm c}$ production compared to PYTHIA calculations
- Enhancement increases towards low pT
- Coalescence model predictions are closer to data, but the observed enhancement is larger than that predicted by models, particularly at higher p_T
- Ratio not described by Statistical Hadronization Models

Centrality Dependence of Λ_c Production

- First measurement of centrality dependence of Ac production in heavy-ion collisions
- \c/D⁰ ratio increases from peripheral to central, indicative of hot medium effects
- Ratio for peripheral Au+Au consistent with p+p values at 7 TeV

- Λ_c^+/D^0 compatible within uncertainties in pp and p-Pb collisions
- Λ_c^+/D^0 ratio higher than expectation from MC (PYTHIA8 with enhanced colour reconnection closer to data)
- New, more precise, preliminary result in p-Pb collisions shows decreasing values from p_T = 4 GeV/c. Trend similar to baryon-to-meson ratio in the light-flavour sector

26

- R_{pPb} of Λ_c^+ consistent with unity, D-meson R_{pPb} and models within uncertainties:
 - CNM effects: POWHEG+PYTHIA with CT10NLO+EPS09 PDF
 - Hot medium effects: POWLANG with 'small-size' QGP formation, collisional energy loss

• Hint of larger R_{AA} for Λ_c^+ at 0-80% than D meson at 0-10%

→ Hierarchy $\Lambda_c^+ R_{AA} > D_s^+ R_{AA} > \text{non-strange D-meson } R_{AA} > \text{pion } R_{AA}$?

Baryon Meson Strangeness

HIM 2018-05 (May 25th-26th, 2018) - Hyunchul Kim

29 😨

consistent STAR and ALICE?

32 🕻

D meson (Hyunchul's summary)

- Non-strange D meson is strongly suppressed in PbPb, increasing with centrality, no significant energy dependence
- Strangeness is enhanced, independent of centrality
- Baryon/meson ratio shows centrality and p_T dependency, energy independence, and larger than expected in PYTHIA

Heavy-flavour decay electrons in pp collisions

- Testing the centre-of-mass energy dependence down to p_T = 0.5 GeV/c
- → Large range of collision energy analysed, data consistently at the upper edge of FONLL calculation at all energies → Large reduction of systematic uncertainty in the measurements w.r.t. previous publications!

34

5

ALICE

Charm and bottom azimuthal correlations

- Extract charm and bottom in separate kinematic regions
- Charm and bottom dimuon Δφ compared to PYTHIA Tune A and POWHEG
 - Theoretical curves normalized with cross-sections from fitting technique

S. Voloshin, QM2002

Fragmentation

Recombination

 $\frac{\text{Baryon}}{\text{Meson}} \approx 1$

 $p_{\rm M} \approx 2 p_{\rm Q} - p_{\rm B} \approx 3 p_{\rm Q}$

