Chemical and kinetic freeze-outs in heavy ion collisions

Exploration for QCD phase diagram HaPhy & HIM

May 26th 2017 Pukyong National University, Busan

Sungtae Cho Kangwon National University

- Introduction
- Hadron production models
- Chemical freeze-out in heavy ion collisions
- Hadronic interactions
- Kinetic freeze-out in heavy ion collisions
- Conclusion

May 26th 2017
 Pukyong National University, Busan

HaPhy & HIM •2 Exploration for QCD phase diagram

Introduction

- Time evolutions after heavy ion collisions

i. Collision ii. Pre-equilibrium state and Quark-gluon plasma iii. Hydrodynamic expansion iv. Chemical freeze-out v. Kinetic freeze-out May 26th 2017 HaPhy & H

Pukyong National University, Busan

HaPhy & HIM • 3 Exploration for QCD phase diagram

- Relativistic heavy ion collisions

U. W. Heinz, J. Phys. Conf. Ser. 455, 012044 (2013)

May 26th 2017
 Pukyong National University, Busan

HaPhy & HIM Exploration for QCD phase diagram

XNU

श्च पा थ

- The QCD Phase diagram

- The QCD phase transition

1) An analytic crossover in QCD

the chiral susceptibilities $\chi(N_s, N_t) = \partial^2/(\partial m_{ud}^2)(\tilde{T}/V)\log Z$,

Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, and K. K. Szabo, Nature, 443, 675 (2006)

May 26th 2017 Pukyong National University, Busan HaPhy & HIM Exploration for QCD phase diagram • 6

2) The various observables lead to different transition temperature, between 150 and 170 MeV

S Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz,, S. Krieg, C. Ratti, and K. K. Szabo, JHEP, 09, 073 (2010)

May 26th 2017

Pukyong National University, Busan

HaPhy & HIM

Exploration for QCD phase diagram

Hadron production models

- Statistical Hadronization model

P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. B344, 43 (1995)

1) The particle production yield In a chemically and thermally equilibrated system of non-interacting hadrons and resonances,

$$N_{i} = V_{H} \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\gamma_{i}^{-1} e^{E_{i}/T_{H}} \pm 1} \qquad E_{i} = \sqrt{m_{i}^{2} + p_{i}^{2}}$$

the fugacity for incomplete strange and charm quarks equilibrium $\gamma = \gamma_c^{n_c + n_{\bar{c}}} e^{[\mu_B n_B + \mu_s n_s]}$

2) Two parameters, the hadronization temperature and the chemical potential determined from the experimental data

May 26th 2017
 Pukyong National University, Busan

HaPhy & HIM •8 Exploration for QCD phase diagram

- Recent statistical model analysis

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nucl. Phys. A **904-905**, 535c (2013) J. Stachel, A. Andronic, P. Braun-Munzinger, and K. Redlich, J. Phys. Conf. Ser. **509**, 012019 (2014)

• May 26th 2017 Pukyong National University, Busan HaPhy & HIM Exploration for QCD phase diagram •9

- Coalescence model

1) Yields of hadrons

V. Greco, C. M. Ko, and P. Levai, Phys. Rev. C **68**, 034904 (2003) R. J. Freis. B. Muller, C. Nonaka, and S. Bass, Phys. Rev. C **68**, 044902 (2003)

$$N^{Coal} = g \int \left[\prod_{i=1}^{n} \frac{1}{g_i} \frac{p_i \cdot d\sigma_i}{(2\pi)^3} \frac{d^3 p_i}{E_i} f(x_i, p_i) \right] f^W(x_1, \dots, x_n; p_1, \dots, p_n)$$

with the Wigner function, the coalescence probability function $f^{W}(x_{1}, \dots, x_{n} : p_{1}, \dots, p_{n})$ $= \int \prod_{i=1}^{n} dy_{i} e^{p_{i} y_{i}} \psi^{*} \left(x_{1} + \frac{y_{1}}{2}, \dots, x_{n} + \frac{y_{n}}{2} \right) \psi \left(x_{1} - \frac{y_{1}}{2}, \dots, x_{n} - \frac{y_{n}}{2} \right)$

i. A Lorentz-invariant phase space integration of a space-like hypersurface constraints the number of particles in the system

$$\int p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3 E_i} f(x_i, p_i) = N_i$$

• May 26th 2017 Pukyong National University, Busan HaPhy & HIM Exploration for QCD phase diagram • 10

- Quark coalescence or quark recombination in heavy ion collisions

V. Greco, C. M. Ko, and P. Levai, Phys. Rev. Lett. 90, 202302 (2003) R. J. Freis. B. Muller, C. Nonaka, and S. Bass, Phys. Rev. Lett. 90, 202303 (2003)

- 1) The puzzle in antiproton /pion ratio
- i. A competition between two particle production mechanisms exists
- : A fragmentation dominates at large transverse momenta

and a coalescence prevails at lower transverse momenta

May 26th 2017 Pukvona National University, Busan

HaPhy & HIM Exploration for QCD phase diagram

2) The transverse momentum spectra

$$\frac{dN_{M}}{d^{2}\mathbf{p}_{T}} = g_{M} \frac{6\pi}{\tau\Delta y R_{\perp}^{2}\Delta_{p}^{3}} \int d^{2}\mathbf{p}_{1T} d^{2}\mathbf{p}_{2T} \frac{dN_{q}}{d^{2}\mathbf{p}_{1T}} \Big|_{|y_{1}| \leq \Delta y/2} \frac{dN_{q}}{d^{2}\mathbf{p}_{2T}} \Big|_{|y_{2}| \leq \Delta y/2} \times \delta^{(2)}(\mathbf{p}_{T} - \mathbf{p}_{1T} - \mathbf{p}_{2T})\Theta(\Delta_{p}^{2} - \frac{1}{4}(\mathbf{p}_{1T} - \mathbf{p}_{2T}) - \frac{1}{4}[(m_{1T} - m_{2T})^{2} - (m_{1} - m_{2})^{2}]).$$

$$f_{M}(x_{1}, x_{2}; p_{1}, p_{2}) = \frac{9\pi}{2(\Delta_{x}\Delta_{p})^{3}}\Theta(\Delta_{x}^{2} - (x_{1} - x_{2})^{2}) \times \Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\times\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}).$$

$$\Theta(\Delta_{p}^{2} - \frac{1}{4}(p_{1} - \frac{1}{$$

3) Quark number scaling of the elliptic flow

- 2 - -

Denes Molnar and Sergei A. Voloshin, Phys. Rev. Lett 91, 092301 (2003)

$$v_{2}(p_{T}) = \frac{\int d\varphi \cos 2\varphi \frac{d^{2}N}{dp_{T}^{2}}}{\int d\varphi \frac{d^{2}N}{dp_{T}^{2}}} , \quad \frac{dN_{q}}{p_{T}dp_{T}d\varphi} = \frac{1}{2\pi} \frac{dN_{q}}{p_{T}dp_{T}} \left[1 + 2v_{2,q}(p_{T})\cos(2\varphi)\right]$$

i. Coalescence model predicts by assuming that partons have elliptical anisotropy

$$v_{2,M}(p_T) = \frac{2v_{2,q}(p_T/2)}{1 + 2v_{2,q}^2(p_T/2)}$$

$$v_{2,B}(p_T) = \frac{3v_{2,q}(p_T/3) + 3v_{2,q}^3(p_T/3)}{1 + 6v_{2,q}^2(p_T/3)}$$

$$v_{2,h}(p_T) \approx nv_{2,q}\left(\frac{1}{n}p_T\right)$$

• May 26th 2017 Pukyong National University, Busan

j

- Yields in the coalescence model

S. Cho *et al.* [ExHIC Collaboration], Phys. Rev. Lett. **106**, 212001 (2011) S. Cho *et al.* [ExHIC Collaboration], Phys. Rev. C **84**, 064910 (2011)

1) Yields at mid-rapidity
$$\sigma_i = \frac{1}{\sqrt{\mu_i \omega}}$$

 $N_h^{Coal} \cong g \prod_{j=1}^n \frac{N_i}{g_i} \prod_{i=1}^{n-1} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T \sigma_i^2)} \frac{(2l_i)!!}{(2l_i+1)!!} \left[\frac{2\mu_i T \sigma_i^2}{(1+2\mu_i T \sigma_i^2)} \right]^{l_i} \frac{1}{\mu_i} = \frac{1}{m_{i+1}} + \frac{1}{\sum_{i=1}^{n} m_{i+1}} \frac{1}{m_{i+1}} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{\mu_i} = \frac{1}{m_{i+1}} + \frac{1}{\sum_{i=1}^{n} m_{i+1}} \frac{1}{m_{i+1}} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{(1+2\mu_i T \sigma_i^2)} \frac{1}{\mu_i} \frac{1}{\mu_i$

2) The internal structure of hadrons is taken into consideration

s-wave
$$\frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T\sigma_i^2)} \sim 0.168$$

p-wave
$$\frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T\sigma_i^2)} \frac{2}{3} \left[\frac{2\mu_i T\sigma_i^2}{(1+2\mu_i T\sigma_i^2)} \right] \sim 0.040$$

d-wave
$$\frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T\sigma_i^2)} \frac{8}{15} \left[\frac{2\mu_i T\sigma_i^2}{(1+2\mu_i T\sigma_i^2)} \right]^2 \sim 0.011$$

• Yields of multi-quark hadrons are suppressed May 26th 2017 Pukyong National University, Busan • 14 Exploration for QCD phase diagram

Chemical freeze-out in heavy ion collisions - Hadron production at chemical freeze-out

1) Start from the hadronization temperature and volume in the statistical hadronization model

 $T_{H}^{RHIC} = 162 \text{ MeV}, \quad V_{H}^{RHIC} = 2100 \text{ fm}^{3}$ $T_{H}^{LHC} = 156 \text{ MeV}, \quad V_{H}^{LHC} = 5380 \text{ fm}^{3}$

- 2) Satisfy the entropy conservation during the expansion of the system, $s_H V_H = s_C V_C$ at both RHIC and LHC using the Lattice results for entropy at different temperatures
 - S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabo, JHEP **1011**, 077 (2010)

• May 26th 2017 Pukyong National University, Busan

3) Require the size of rho and omega mesons produced at the critical temperature by coalescence of thermal quarks in QGr to be equal at both RHIC and LHC

4) Force the yields of rho & omega mesons produced at $T_{\rm C}$

$$= N_{\rho}^{coal} = \frac{3 \cdot 3}{(2 \cdot 3)^2} N_u N_u \frac{(4\pi/\omega_l)^{3/2}}{V_C(1 + 2T_C/\omega_l)} \left(\frac{M_u + M_u}{M_u^2}\right)^{3/2}$$

$$N_{\rho}^{stat} = V_H \frac{3 \cdot 3}{2\pi^2} \int_0^{\infty} \frac{p^2 dp}{e^{\sqrt{m_{\rho}^2 + p^2}/T_H} - 1}$$
in the coalescence model to be equal to those at T_H in the statistical hadronization model
$$I_H^{HIC} = 156 \text{ MeV}, V_H^{HIC} = 156 \text{ MeV}, V_H^{HIC} = 5380 \text{ fm}^3$$

0 +-110

120

130

140

T (MeV)

150

160

170

16

S. Cho et al. [ExHIC Collaboration], Prog. Part. Nucl. Phys. **95** 279 (2017)

• May 26th 2017 Pukyong National University, Busan

5) Parameter determinations

Table 3.1

Statistical and coalescence model parameters for Scenario 1 and 2 at RHIC (200 GeV), LHC (2.76 TeV) and LHC (5.02 TeV), and those given in Refs. [14,15]. Quark masses are taken to be $m_q = 350$ MeV, $m_s = 500$ MeV, $m_c = 1500$ MeV and $m_b = 4700$ MeV. In Refs. [14,15], light quark masses were taken to be $m_q = 300$ MeV.

	RHIC		LHC (2.76 TeV)		LHC (5.02 TeV)		RHIC	LHC (5 TeV)	
	Sc. 1	Sc. 2	Sc. 1	Sc. 2	Sc. 1	Sc. 2	Refs [14,15]		
T _H (MeV)	162			156				175	
V_H (fm ³)	2100		5380				1908	5152	
μ_B (MeV)	24			0				0	
μ_{s} (MeV)	10			0				0	
γc	22		39		50		6.40	15.8	
Уъ	4.0×10^{7}		8.6×10^{8}		$1.4 imes 10^9$		2.2×10^{6}	3.3×10^{7}	
$T_{\rm C}$ (MeV)	162	166	156	166	156	166		175	
V_C (fm ³)	2100	1791	5380	3533	5380	3533	1000	2700	
ω (MeV)	590	608	564	609	564	609	550		
$\omega_{\rm s}$ (MeV)	431	462	426	502	426	502		519	
ω_{c} (MeV)	222	244	219	278	220	279		385	
ω_b (MeV)	183	202	181	232	182	234		338	
$N_u = N_d$	320	302	700	593	700	593	245	662	
$N_s = N_{\bar{s}}$	183	176	386	347	386	347	150	405	
$N_c = N_{\bar{c}}$	4.1		11		14		3	20	
$N_b = N_{\bar{b}}$	0.03			0.44 0.71			0.02	0.8	
T_F (MeV)		119		115				125	
V_F (fm ³)	20355			50646				30569	

May 26th 2017
 Pukyong National University, Busan

HaPhy & HIM Exploration for QCD phase diagram • 17

Hadronic interactions

- A meson exchange model with an effective Lagrangian $\bar{P}^* D D^* \bar{D} D D^* \bar{D} D D \bar{D}$

S. G. Matinyan and B. Muller, Phys. Rev. C **58**, 2994 (1998)
K. L. Haglin, Phys. Rev. C **61**, 031902(R) (2000)
Z. Lin and C. M. Ko, Phys. Rev. C **62**, 034903 (2000)
Y. Oh, T. Song, and S. -H. Lee, Phys. Rev. C **63**, 034901 (2000)

$$\begin{aligned}
\pi & J/\Psi & \pi & J/\Psi \\
\mu & \rho & J/\Psi \\
\rho &$$

K* mesons in heavy ion collisions

M. M. Aggarwal et al, [STAR Collaboration], Phys. Rev. C 84, 034909 (2011)
B. Abelev et al. [ALICE Collaboration], Phys. Rev. C 91, 024609 (2015)

May 26th 2017
 Pukyong National University, Busan

Pukyong National University, Busan

Exploration for QCD phase diagram

K* meson production from kaons and pions & K* meson decay to kaons and pions

$$\sigma_{K\pi\to K^*} = \frac{g_{K^*}}{g_K g_\pi} \frac{4\pi}{p_{cm}^2} \frac{s\Gamma_{K^*\to K\pi}^2}{(m_{K^*} - \sqrt{s})^2 + s\Gamma_{K^*\to K\pi}^2}, \quad \Gamma_{K^*\to K\pi}(\sqrt{s}) = \frac{g_{\pi K^* K}^2}{2\pi s} p_{cm}^3(\sqrt{s}),$$

2) Thermally averaged cross sections for K* mesons and kaons P. Koch, B. Muller, and J. Rafelski, Phys. Rept., 142, 167 (1986)

$$\left\langle \sigma_{ih \to jk} v_{ih} \right\rangle = \frac{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j) \sigma_{ih \to jk} v_{ih}}{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j)}$$

Time evolution of the K* and K meson abundances

: Rate equations for K* & K meson abundances

$$\frac{dN_{K^*}(\tau)}{d\tau} = \langle \sigma_{K\rho\to K^*\pi} v_{K\rho} \rangle n_{\rho}(\tau) N_K(\tau) - \langle \sigma_{K^*\pi\to K\rho} v_{K^*\pi} \rangle n_{\pi}(\tau) N_{K^*}(\tau) + \langle \sigma_{K\pi\to K^*\rho} v_{K\pi} \rangle n_{\pi}(\tau) N_K(\tau) \\
- \langle \sigma_{K^*\rho\to K\pi} v_{K^*\rho} \rangle n_{\rho}(\tau) N_{K^*}(\tau) + \langle \sigma_{\rho\pi\to K^*K} v_{\rho\pi} \rangle n_{\pi}(\tau) N_{\rho}(\tau) - \langle \sigma_{K^*K\to \rho\pi} v_{K^*K} \rangle n_K(\tau) N_{K^*}(\tau) \\
+ \langle \sigma_{\pi\pi\to K^*\bar{K}^*} v_{\pi\pi} \rangle n_{\pi}(\tau) N_{\pi}(\tau) - \langle \sigma_{K^*\bar{K}^*\to \pi\pi} v_{K^*\bar{K}^*} \rangle n_{\bar{K}^*}(\tau) N_{K^*}(\tau) + \langle \sigma_{\rho\rho\to K^*K^*} v_{\rho\rho} \rangle n_{\rho}(\tau) N_{\rho}(\tau) \\
- \langle \sigma_{K^*\bar{K}^*\to \rho\rho} v_{K^*\bar{K}^*} \rangle n_{\bar{K}^*}(\tau) N_{K^*}(\tau) + \langle \sigma_{\pi K\to K^*} v_{\pi K} \rangle n_{\pi}(\tau) N_K(\tau) - \langle \Gamma_{K^*} \rangle N_{K^*}(\tau), \\
\frac{dN_K(\tau)}{dN_K(\tau)} = \langle \sigma_{K^*\bar{K}^*} v_{\mu} \rangle n_{\mu}(\tau) N_{\mu}(\tau) + \langle \sigma_{\mu} v_{\mu} v_{\mu} \rangle n_{\mu}(\tau) N_{\mu}(\tau) + \langle \sigma_{\mu} v_{\mu} v_{\mu} v_{\mu} \rangle n_{\mu}(\tau) N_{\mu}(\tau) + \langle \sigma_{\mu} v_{\mu} v_{\mu} v_{\mu} v_{\mu} v_{\mu} \rangle n_{\mu}(\tau) N_{\mu}(\tau) + \langle \sigma_{\mu} v_{\mu} v_$$

$$\frac{\partial \nabla R(\tau)}{\partial \tau} = \langle \sigma_{\pi\pi \to K\bar{K}} v_{\pi\pi} \rangle n_{\pi}(\tau) N_{\pi}(\tau) \\
= \langle \sigma_{K\bar{K} \to \pi\pi} v_{K\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K}(\tau) \\
+ \langle \sigma_{\rho \to K\bar{K}} v_{\rho \rho} \rangle n_{\rho}(\tau) N_{\rho}(\tau) \\
- \langle \sigma_{K\bar{K} \to \rho \rho} v_{K\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K}(\tau) \\
+ \langle \sigma_{K^{*}\pi \to K\rho} v_{K^{*}\pi} \rangle n_{\pi}(\tau) N_{K^{*}}(\tau) \\
- \langle \sigma_{K\rho \to K^{*}\pi} v_{K\rho} \rangle n_{\rho}(\tau) N_{K^{*}}(\tau) \\
+ \langle \sigma_{K^{*}\rho \to K\pi} v_{K^{*}\rho} \rangle n_{\rho}(\tau) N_{K^{*}}(\tau) \\
- \langle \sigma_{K\pi \to K^{*}\rho} v_{K\pi} \rangle n_{\pi}(\tau) N_{K}(\tau) \\
+ \langle \sigma_{\rho\pi \to K^{*}\bar{K}} v_{\rho\pi} \rangle n_{\pi}(\tau) N_{K^{*}}(\tau) \\
- \langle \sigma_{K^{*}\bar{K} \to \rho\pi} v_{K^{*}\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K^{*}}(\tau) \\
+ \langle \Gamma_{K^{*}} \rangle N_{K^{*}}(\tau) - \langle \sigma_{\pi K \to K^{*}} v_{\pi K} \rangle n_{\pi}(\tau) N_{K}(\tau).$$

Kinetic freeze-out in heavy ion collisions

The abundance ratio of K* mesons to kaons in heavy ion collisions

1) Simplified rate equations

$$\frac{dN_{K^*}(\tau)}{d\tau} = \gamma_K N_K(\tau) - \gamma_{K^*} N_{K^*}(\tau),$$

$$\frac{dN_K(\tau)}{d\tau} = -\gamma_K N_K(\tau) + \gamma_{K^*} N_{K^*}(\tau),$$

2) K* and K meson abundances

$$N_{K^*}(\tau) = \frac{\gamma_K}{\gamma} N^0 + \left(N_{K^*}^0 - \frac{\gamma_K}{\gamma} N^0 \right) e^{-\gamma(\tau - \tau_h)},$$

$$N_K(\tau) = \frac{\gamma_{K^*}}{\gamma} N^0 + \left(N_K^0 - \frac{\gamma_{K^*}}{\gamma} N^0 \right) e^{-\gamma(\tau - \tau_h)},$$

$$R(\tau) = \frac{N_{K^*}(\tau)}{N_{K^*}(\tau) + N_K(\tau)} = \frac{N_{K^*}(\tau)}{N^0},$$

$$= \frac{\gamma_K}{\gamma} + \left(\frac{N_{K^*}^0}{N^0} - \frac{\gamma_K}{\gamma} \right) e^{-\gamma(\tau - \tau_h)}.$$

Pukyong National University, Busan

$$\begin{aligned}
& \langle K^* = \langle \sigma_{K^*\rho \to K\pi} v_{K^*\rho} \rangle n_\rho + \langle \sigma_{K^*\pi \to K\rho} v_{K^*\pi} \rangle n_\pi \\
& + \langle \Gamma_{K^*} \rangle, \\
& \gamma_K = \langle \sigma_{K\pi \to K^*\rho} v_{K\pi} \rangle n_\pi + \langle \sigma_{K\rho \to K^*\pi} v_{K\rho} \rangle n_\rho \\
& + \langle \sigma_{K\pi \to K^*} v_{K\pi} \rangle n_\pi.
\end{aligned}$$

- Geometrical concept of the freeze-out

J. P. Bondorf, S. I. A. Garpman, J. Zimanyi, Nucl. Phys. A 296, 320 (1978)

The freeze-out criterion

May 26th 2017 Pukvona Natio

: the time for a macroscopic flow element is equal to the microscopic interaction time which is a function of local density, mean speed, and cross sections

The scattering rate and expansion rate

$$\tau_{exp} = \frac{1}{\partial \cdot u} = \tau_{scatt}^{i} = \frac{1}{\sum_{j} \langle \sigma_{ij} v_{ij} \rangle n_{j}} \xrightarrow{\text{HaPhy \& HIM e 24}} \text{HaPhy \& HIM e 24}$$

- The kinetic freeze-out condition

S. Cho, T. Song, and S-H. Lee, arXiv:15011.08019

1) Rate equations for the abundances of K* and K mesons

with
$$\begin{aligned} \frac{dN_{K^*}(\tau)}{d\tau} &= \frac{1}{\tau_{scatt}^K} N_K(\tau) - \frac{1}{\tau_{scatt}^{K^*}} N_{K^*}(\tau), \\ \frac{dN_K(\tau)}{d\tau} &= \frac{1}{\tau_{scatt}^{K^*}} N_{K^*}(\tau) - \frac{1}{\tau_{scatt}^K} N_K(\tau), \\ 1/\tau_{scatt}^{K^*} &= \sum_i \langle \sigma_{K^*i} v_{K^*i} \rangle n_i, \ 1/\tau_{scatt}^K &= \sum_j \langle \sigma_{Kj} v_{Kj} \rangle n_j, \end{aligned}$$

3) The yield ratio between K* mesons and kaons

with
$$R_0 = \frac{\tau_{scatt}}{\tau_{scatt}^K} = \frac{\tau_{scatt}^{K^*}}{\tau_{scatt}^K} \operatorname{and} \tau_{scatt} \tau_{scatt}^{K^*} = \frac{\tau_{scatt}^{K^*}}{\tau_{scatt}^K}$$

• May 26th 2017 Pukyong National University, Busan HaPhy & HIM Exploration for QCD phase diagram •25

- The freeze-out condition of the pion

1) The scattering time for pions

C. M. Hung and Edward V. Shuryak, Phys. Rev. C **57**, 1891 (1998) Ulrich Heinz and Gregory Cestin, Eur. Phys. J. ST, **155**, 75 (2008)

Conclusion

- Chemical and kinetic freeze-outs in heavy ion collisions
- 1) Heavy ion collision experiments provide various ways to investigate the phase diagrams of QCD
- 2) The study on the hadron production is helpful in identifying chemical and kinetic freeze-out conditions in heavy ion collisions
- 3) The final yield ratio between K* mesons and kaons may reflect the condition at the last stage of the hadronic effects on K* and K mesons, or the kinetic freeze-out temperature
- 4) The smaller ratio of K*/K measured at the LHC energy may indicate a lower kinetic freeze-out temperature compared to that

• May 26th 2017 Pukyong National University, Busan

HaPhy & HIM •27 Exploration for QCD phase diagram