## Chemical and kinetic freeze-outs in heavy ion collisions

## Exploration for QCD phase diagram HaPhy & HIM

May 26th 2017 Pukyong National University, Busan



 Sungtae Cho **KANU EDIT**<br>Kangwon National University





## − Introduction

- − Hadron production models
- − Chemical freeze-out in heavy ion collisions
- − Hadronic interactions
- − Kinetic freeze-out in heavy ion collisions
- − Conclusion

May 26th 2017 Pukyong National University, Busan <sup>2</sup>

HaPhy & HIM Exploration for QCD phase diagram



## Introduction

### − Time evolutions after heavy ion collisions



i. Collision ii. Pre-equilibrium state and Quark-gluon plasma iii. Hydrodynamic expansion iv. Chemical freeze-out May 26th 2017

Pukyong National University, Busan <sup>3</sup>

HaPhy & HIM 3 Exploration for QCD phase diagram

## − Relativistic heavy ion collisions



U. W. Heinz, J. Phys. Conf. Ser. **455**, 012044 (2013)

May 26th 2017 Pukyong National University, Busan <sup>4</sup>

HaPhy & HIM  $\bullet$  4 Exploration for QCD phase diagram

XNU

श्चिम



## − The QCD Phase diagram



## − The QCD phase transition



#### 1) An analytic crossover in QCD



the chiral susceptibilities  $x(N_s, N_t) = \frac{\partial^2}{\partial m_{ud}^2}(\frac{T}{V}) \log Z$ ,

Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, and K. K. Szabo, Nature, **443**, 675 (2006)

May 26th 2017

Pukyong National University, Busan <sup>6</sup> Exploration for QCD phase diagram HaPhy & HIM 06



### 2) The various observables lead to different transition temperature, between 150 and 170 MeV



S Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz,, S. Krieg, C. Ratti, and K. K. Szabo, JHEP, **09**, 073 (2010)

May 26th 2017

HaPhy & HIM 37

Pukyong National University, Busan <sup>7</sup> Exploration for QCD phase diagram



# Hadron production models

## − Statistical Hadronization model

P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. **B344**, 43 (1995)

 1) The particle production yield In a chemically and thermally equilibrated system of non-interacting hadrons and resonances,

$$
N_{i} = V_{H} \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2}dp}{\gamma_{i}^{-1}e^{E_{i}/T_{H}} \pm 1} \qquad E_{i} = \sqrt{m_{i}^{2} + p_{i}^{2}}
$$

 the fugacity for incomplete strange and charm quarks equilibrium  $n_{\overline{c}}$   $\Delta$   $\mu_B$  $n_B$  +  $\mu_s$  $n_s$ *c e*  $\gamma = \gamma_c^{n_c + n_{\overline{c}}} e^{\lfloor \mu_B n_B + \mu \rfloor}$  $+n_z$   $\mu_b n_b +$  $\equiv$ 

 2) Two parameters, the hadronization temperature and the equilibrium<br>  $\gamma = \gamma_c^{n_c + n_{\overline{c}}} e^{[\mu_B n_B + \mu_s n_s]}$ <br>
2) Two parameters, the hadronization temperature and the chemical potential determined from the experimental data

May 26th 2017 Pukyong National University, Busan <sup>8</sup>

HaPhy & HIM 88 Exploration for QCD phase diagram



## − Recent statistical model analysis



 A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nucl. Phys. A **904-905**, 535c (2013) J. Stachel, A. Andronic, P. Braun-Munzinger, and K. Redlich, J. Phys. Conf. Ser. **509**, 012019 (2014)

May 26th 2017 Pukyong National University, Busan

HaPhy & HIM Exploration for QCD phase diagram

## − Coalescence model



### 1) Yields of hadrons

 V. Greco, C. M. Ko, and P. Levai, Phys. Rev. C **68**, 034904 (2003) R. J. Freis. B. Muller, C. Nonaka, and S. Bass, Phys. Rev. C **68**, 044902 (2003)

$$
N^{Coal} = g \int \left[ \prod_{i=1}^{n} \frac{1}{g_i} \frac{p_i \cdot d\sigma_i}{(2\pi)^3} \frac{d^3 p_i}{E_i} f(x_i, p_i) \right] f^{W}(x_1, \dots, x_n : p_1, \dots, p_n)
$$

 with the Wigner function, the coalescence probability function  $N^{coul} = g \int \left[ \prod_{i=1}^n \frac{F_i - F_i}{g_i} \frac{\partial F_i}{(\partial x_i)^3} \frac{\partial F_i}{\partial x_i} f(x_i, p_i) \right] f^W(x_1, \dots, x_n : p_1, \dots, p_n)$ <br>
with the Wigner function, the coalescence probability fun<br>  $f^W(x_1, \dots, x_n : p_1, \dots, p_n)$ <br>  $= \int \prod_{i=1}^n dy_i e^{p_i y_i} \psi^* \left( x_1 + \frac{y_1$  $(x_1, \cdots, x_n : p_1, \cdots, p_n)$  $f^W(x_1, \dots, x_n : p_1, \dots, p)$  $\int \prod$ ═  $\int$  $\bigg)$  $\overline{\phantom{a}}$  $\setminus$  $\bigg($  $|\psi|$   $x_1 - \frac{y_1}{2}, \cdots, x_n \int$  $\bigg)$  $\overline{\phantom{a}}$  $\setminus$  $=\int_{0}^{n} dv \cdot e^{p_i y_i} w^{*} \left(x_1 + \frac{y_1}{\cdots} \ldots x_n + \frac{y_n}{\cdots} \right)$ *n i n n n n p y i y x y x y x y*  $dy_i e^{p_i y_i} \psi^*$  *x* 1 1 1 1 1 \* 2  $, \ldots, \ldots, n$  2  $\mid \cdot \mid \cdot \mid$  2  $, \ldots, \ldots, n$  2  $\psi \mid X_1 + \frac{1}{2}, \cdots, X_n + \frac{1}{2} \mid \psi \mid X_1 - \frac{1}{2}, \cdots$ 

 i. A Lorentz-invariant phase space integration of a space-like hypersurface constraints the number of particles in the system

$$
\int p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3 E_i} f(x_i, p_i) = N_i
$$

HaPhy & HIM **010** Exploration for QCD phase diagram May 26th 2017 Pukyong National University, Busan <sup>10</sup>



## − Quark coalescence or quark recombination in heavy ion collisions

 V. Greco, C. M. Ko, and P. Levai, Phys. Rev. Lett. **90**, 202302 (2003) R. J. Freis. B. Muller, C. Nonaka, and S. Bass, Phys. Rev. Lett. **90**, 202303 (2003)

- 1) The puzzle in antiproton /pion ratio
- i. A competition between two particle production mechanisms exists
- : A fragmentation dominates at large transverse momenta



and a coalescence prevails at lower transverse momenta

May 26th 2017

HaPhy & HIM<sub>211</sub> Exploration for QCD phase diagram Pukyong National University, Busan <sup>11</sup>



### 2) The transverse momentum spectra

$$
\frac{dN_M}{d^2 \mathbf{p}_T} = g_M \frac{6\pi}{\tau \Delta y R_{\perp}^2 \Delta_p^3} \int d^2 \mathbf{p}_{1T} d^2 \mathbf{p}_{2T} \frac{dN_q}{d^2 \mathbf{p}_{1T}} \Big|_{|y_1| \leq \Delta y/2} \frac{dN_q}{d^2 \mathbf{p}_{2T}} \Big|_{|y_2| \leq \Delta y/2}
$$
\n
$$
\times \delta^{(2)} (\mathbf{p}_T - \mathbf{p}_{1T} - \mathbf{p}_{2T}) \Theta (\Delta_p^2 - \frac{1}{4} (\mathbf{p}_{1T} - \mathbf{p}_{2T}) - \frac{1}{4} [ (m_{1T} - m_{2T})^2 - (m_1 - m_2)^2 ] ).
$$
\n
$$
f_M(x_1, x_2; p_1, p_2) = \frac{9\pi}{2(\Delta_x \Delta_p)^3} \Theta (\Delta_x^2 - (x_1 - x_2)^2)
$$
\n
$$
\times \Theta (\Delta_p^2 - \frac{1}{4} (p_1 - p_2)^2 + \frac{1}{4} (m_1 - m_2)^2 ).
$$
\n
$$
= \frac{6}{10^3}
$$
\n
$$
g_M(x_1, x_2; p_1, p_2) = \frac{9\pi}{2(\Delta_x \Delta_p)^3} \Theta (\Delta_x^2 - (x_1 - x_2)^2)
$$
\n
$$
= \frac{6}{10^3}
$$
\n
$$
\frac{dN_M}{dR} = C_M \int_{\Sigma} \frac{d^3RP \cdot u(R)}{(2\pi)^3} \int \frac{d^3q}{(2\pi)^3} = \frac{6}{10^3}
$$
\n
$$
= \frac{6}{10^3}
$$
\n
$$
= \frac{6}{10^3}
$$
\n
$$
\Phi_M^W(\mathbf{q}) = \int d^3r \Phi_M^W(\mathbf{r}, \mathbf{q})
$$
\n
$$
= \frac{6}{10^
$$



### 3) Quark number scaling of the elliptic flow

Denes Molnar and Sergei A. Voloshin, Phys. Rev. Lett **91**, 092301 (2003)

$$
v_2(p_T) = \frac{\int d\varphi \cos 2\varphi \frac{d^2 N}{dp_T^2}}{\int d\varphi \frac{d^2 N}{dp_T^2}} \frac{dN_q}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN_q}{p_T dp_T} \left[1 + 2v_{2,q}(p_T) \cos(2\varphi)\right]
$$

 i. Coalescence model predicts by assuming that partons have elliptical anisotropy

$$
v_{2,M}(p_T) = \frac{2v_{2,q}(p_T/2)}{1 + 2v_{2,q}^2(p_T/2)}
$$
  

$$
v_{2,B}(p_T) = \frac{3v_{2,q}(p_T/3) + 3v_{2,q}^3(p_T/3)}{1 + 6v_{2,q}^2(p_T/3)}
$$
  

$$
v_{2,h}(p_T) \approx nv_{2,q} \left(\frac{1}{n}p_T\right)
$$

May 26th 2017





*j*

## − Yields in the coalescence model

 S. Cho *et al*. [ExHIC Collaboration], Phys. Rev. Lett. **106**, 212001 (2011) S. Cho *et al*. [ExHIC Collaboration], Phys. Rev. C **84**, 064910 (2011)

1) Yields at mid-rapidity 
$$
\sigma_i = \frac{1}{\sqrt{\mu_i \omega}}
$$
  
\n
$$
N_h^{Coal} \cong g \prod_{j=1}^n \frac{N_i}{g_i} \prod_{i=1}^{n-1} \frac{(4\pi \sigma_i^2)^{3/2}}{V(1+2\mu_i T \sigma_i^2)} \frac{(2l_i)!!}{(2l_i+1)!!} \left[ \frac{2\mu_i T \sigma_i^2}{(1+2\mu_i T \sigma_i^2)} \right]^{l_i} \frac{1}{\mu_i} = \frac{1}{m_{i+1}} + \frac{1}{\sum m_j}
$$

2) The internal structure of hadrons is taken into consideration

$$
\text{S-WAVE} \quad \frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T \sigma_i^2)} \approx 0.168
$$
\n
$$
\text{p-WAVE} \quad \frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T \sigma_i^2)} \frac{2}{3} \left[ \frac{2\mu_i T \sigma_i^2}{(1+2\mu_i T \sigma_i^2)} \right] \approx 0.040
$$
\n
$$
\text{d-Wave} \quad \frac{N_i}{g_i} \frac{(4\pi\sigma_i^2)^{3/2}}{V(1+2\mu_i T \sigma_i^2)} \frac{8}{15} \left[ \frac{2\mu_i T \sigma_i^2}{(1+2\mu_i T \sigma_i^2)} \right]^2 \approx 0.011
$$

 $\rm \frac{1}{10}$  Yields of multi-quark hadrons are suppressed  $\rm _{Hafhy~\&~HIM}$ Exploration for QCD phase diagram Pukyong National University, Busan <sup>14</sup> May 26th 20



## − Hadron production at chemical freeze-out Chemical freeze-out in heavy ion collisions

1) Start from the hadronization temperature and volume in the statistical hadronization model

 $T_H^{RHIC} = 162$  MeV,  $V_H^{RHIC} = 2100$  fm<sup>3</sup>  $T_H^{LHC} = 156$  MeV,  $V_H^{LHC} = 5380$  fm<sup>3</sup>  $\equiv$  $V_H^{LHC} = 5380$   $\text{fm}^3$  $\equiv$  $V_H^{RHIC} = 2100$   $\text{fm}^3$ 

- 2) Satisfy the entropy conservation during the expansion of the a system,  $s_H V_H = s_C V_C$  at both RHIC and LHC using the Lattice results for entropy at different temperatures
	- S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabo, JHEP **1011**, 077 (2010)



 $\sum_{i=1}^{\infty}$ 

150

160

170

140

130

120

3) Require the size of rho and omega mesons produced at the critical temperature by coalescence of thermal quarks in QGr to be equal at both RHIC and LHC

4) Force the yields of rho & omega mesons produced at  $T_{\odot}$ 

$$
N_{\rho}^{stat} = V_H \frac{3 \cdot 3}{2\pi^2} N_u N_u \frac{(4\pi/\omega_l)^{3/2}}{V_C(1+2T_C/\omega_l)} \left(\frac{M_u + M_u}{M_u^2}\right)^{3/2}
$$
  
\n
$$
N_{\rho}^{stat} = V_H \frac{3 \cdot 3}{2\pi^2} \int_0^{\infty} \frac{p^2 dp}{e^{\sqrt{m_{\rho}^2 + p^2}/T_H} - 1}
$$
  
\nin the coolescence model  
\nto be equal to those at T<sub>H</sub>  
\nin the statistical hadronization  $\sum_{i=1}^{n} \frac{4}{3}$   
\nmodel  
\ns. Cho et al. [ExHIC Collaboration],

0

110

Prog. Part. Nucl. Phys. **95** 279 (2017)

May 26th 2017 may zoni zony<br>Pukyong National University, Busan 16 (1999) 16 (1999) 16 (1999) 16 (1999) 16 (1999) 16 (1999) 16 (1999) 16 (1

#### 5) Parameter determinations



#### Table 3.1

Statistical and coalescence model parameters for Scenario 1 and 2 at RHIC (200 GeV), LHC (2.76 TeV) and LHC (5.02 TeV), and those given in Refs. [14,15]. Quark masses are taken to be  $m_q = 350$  MeV,  $m_s = 500$  MeV,  $m_c = 1500$  MeV and  $m_b = 4700$  MeV. In Refs. [14,15], light quark masses were taken to be  $m_q = 300$  MeV.



HaPhy & HIM 17 Exploration for QCD phase diagram May 26th 2017 Pukyong National University, Busan <sup>17</sup>



## Hadronic interactions

## − A meson exchange model with an effective Lagrangian





## − K\* mesons in heavy ion collisions



 M. M. Aggarwal et al, [STAR Collaboration], Phys. Rev. C **84**, 034909 (2011) B. Abelev et al. [ALICE Collaboration], Phys. Rev. C **91**, 024609 (2015)

May 26th 2017







### 1) K\* meson production from kaons and pions & K\* meson decay to kaons and pions

$$
\sigma_{K\pi\to K^*} = \frac{g_{K^*}}{g_K g_\pi} \frac{4\pi}{p_{cm}^2} \frac{s\Gamma_{K^* \to K\pi}^2}{(m_{K^*} - \sqrt{s})^2 + s\Gamma_{K^* \to K\pi}^2}, \quad \Gamma_{K^* \to K\pi}(\sqrt{s}) = \frac{g_{\pi K^* K}^2}{2\pi s} p_{cm}^3(\sqrt{s}),
$$

2) Thermally averaged cross sections for K\* mesons and kaons P. Koch, B. Muller, and J. Rafelski, Phys. Rept., **142**, 167 (1986)

$$
\left\langle \sigma_{ih\rightarrow jk} v_{ih} \right\rangle = \frac{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j) \sigma_{ih\rightarrow jk} v_{ih}}{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j)}
$$





## − Time evolution of the K\* and K meson abundances

: Rate equations for K\* & K meson abundances

$$
\frac{dN_{K^*}(\tau)}{d\tau} = \langle \sigma_{K\rho \to K^* \pi} v_{K\rho} \rangle n_{\rho}(\tau) N_K(\tau) - \langle \sigma_{K^* \pi \to K \rho} v_{K^* \pi} \rangle n_{\pi}(\tau) N_{K^*}(\tau) + \langle \sigma_{K \pi \to K^* \rho} v_{K \pi} \rangle n_{\pi}(\tau) N_K(\tau) \n- \langle \sigma_{K^* \rho \to K \pi} v_{K^* \rho} \rangle n_{\rho}(\tau) N_{K^*}(\tau) + \langle \sigma_{\rho \pi \to K^* K} v_{\rho \pi} \rangle n_{\pi}(\tau) N_{\rho}(\tau) - \langle \sigma_{K^* K \to \rho \pi} v_{K^* K} \rangle n_K(\tau) N_{K^*}(\tau) \n+ \langle \sigma_{\pi \pi \to K^* \bar{K}^*} v_{\pi \pi} \rangle n_{\pi}(\tau) N_{\pi}(\tau) - \langle \sigma_{K^* \bar{K}^* \to \pi \pi} v_{K^* \bar{K}^*} \rangle n_{\bar{K}^*}(\tau) N_{K^*}(\tau) + \langle \sigma_{\rho \rho \to K^* K^*} v_{\rho \rho} \rangle n_{\rho}(\tau) N_{\rho}(\tau) \n- \langle \sigma_{K^* K^* \to \rho \rho} v_{K^* K^*} \rangle n_{K^*}(\tau) N_{K^*}(\tau) + \langle \sigma_{\pi K \to K^*} v_{\pi K} \rangle n_{\pi}(\tau) N_K(\tau) - \langle \Gamma_{K^*} \rangle N_{K^*}(\tau),
$$
\n
$$
\frac{dN_K(\tau)}{d\tau} = \langle \sigma_{\pi \pi \to K \bar{K}} v_{\pi \pi} \rangle n_{\pi}(\tau) N_{\pi}(\tau)
$$

$$
d\tau = \langle \sigma_{K\bar{K}\to\pi\pi} v_{K\bar{K}} \rangle n_{\bar{K}}(\tau) v_{\pi}(\tau) \rangle
$$
  
\n
$$
- \langle \sigma_{K\bar{K}\to\pi\pi} v_{K\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K}(\tau) \rangle
$$
  
\n
$$
+ \langle \sigma_{\rho\rho\to K\bar{K}} v_{\rho\rho} \rangle n_{\rho}(\tau) N_{\rho}(\tau) \rangle
$$
  
\n
$$
- \langle \sigma_{K\bar{K}\to\rho\rho} v_{K\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K}(\tau) \rangle
$$
  
\n
$$
+ \langle \sigma_{K^*\pi\to K\rho} v_{K^*\pi} \rangle n_{\pi}(\tau) N_{K^*}(\tau) \rangle
$$
  
\n
$$
- \langle \sigma_{K\rho\to K^*\pi} v_{K\rho} \rangle n_{\rho}(\tau) N_{K}(\tau) \rangle
$$
  
\n
$$
+ \langle \sigma_{K^*\rho\to K\pi} v_{K^*\rho} \rangle n_{\rho}(\tau) N_{K^*}(\tau) \rangle
$$
  
\n
$$
- \langle \sigma_{K\pi\to K^*\rho} v_{K\pi} \rangle n_{\pi}(\tau) N_{\rho}(\tau) \rangle
$$
  
\n
$$
- \langle \sigma_{K^*\bar{K}\to\rho\pi} v_{K^*\bar{K}} \rangle n_{\bar{K}}(\tau) N_{K^*}(\tau) \rangle
$$
  
\n
$$
+ \langle \Gamma_{K^*} \rangle N_{K^*}(\tau) - \langle \sigma_{\pi K \to K^*} v_{\pi K} \rangle n_{\pi}(\tau) N_{\tau} \rangle n_{\pi}(\tau) \rangle
$$



## Kinetic freeze-out in heavy ion collisions



## − The abundance ratio of K\* mesons to kaons in heavy ion collisions

1) Simplified rate equations  
\n
$$
\frac{dN_{K^*}(\tau)}{d\tau} = \gamma_K N_K(\tau) - \gamma_{K^*} N_{K^*}(\tau),
$$
\n
$$
\frac{dN_K(\tau)}{d\tau} = -\gamma_K N_K(\tau) + \gamma_{K^*} N_{K^*}(\tau),
$$

2) K\* and K meson abundances

$$
N_{K^*}(\tau) = \frac{\gamma_K}{\gamma} N^0 + \left( N_{K^*}^0 - \frac{\gamma_K}{\gamma} N^0 \right) e^{-\gamma(\tau - \tau_h)}
$$
  
\n
$$
N_K(\tau) = \frac{\gamma_{K^*}}{\gamma} N^0 + \left( N_K^0 - \frac{\gamma_{K^*}}{\gamma} N^0 \right) e^{-\gamma(\tau - \tau_h)}
$$
  
\n
$$
R(\tau) = \frac{N_{K^*}(\tau)}{N_{K^*}(\tau) + N_K(\tau)} = \frac{N_{K^*}(\tau)}{N^0}
$$
  
\n
$$
= \frac{\gamma_K}{\gamma} + \left( \frac{N_{K^*}^0}{N^0} - \frac{\gamma_K}{\gamma} \right) e^{-\gamma(\tau - \tau_h)}.
$$

$$
\gamma_{K^*} = \langle \sigma_{K^*\rho \to K\pi} v_{K^*\rho} \rangle n_{\rho} + \langle \sigma_{K^*\pi \to K\rho} v_{K^*\pi} \rangle n_{\pi}
$$
  
+  $\langle \Gamma_{K^*} \rangle$ ,  
 $\gamma_K = \langle \sigma_{K\pi \to K^*\rho} v_{K\pi} \rangle n_{\pi} + \langle \sigma_{K\rho \to K^*\pi} v_{K\rho} \rangle n_{\rho}$   
+  $\langle \sigma_{K\pi \to K^*} v_{K\pi} \rangle n_{\pi}$ .



## − Geometrical concept of the freeze-out



J. P. Bondorf, S. I. A. Garpman, J. Zimanyi, Nucl. Phys. A **296**, 320 (1978)

#### The freeze-out criterion

May 26th 20

 : the time for a macroscopic flow element is equal to the microscopic interaction time which is a function of local density, mean speed, and cross sections

#### The scattering rate and expansion rate

May 26th 2017 
$$
\tau_{exp} = \frac{1}{\partial \cdot u} = \tau_{scatt}^i = \frac{1}{\sum_j \langle \sigma_{ij} v_{ij} \rangle n_j}
$$
   
\nPukyong National Univel



## − The kinetic freeze-out condition

S. Cho, T. Song, and S-H. Lee, arXiv:15011.08019

1) Rate equations for the abundances of K\* and K mesons

$$
\frac{dN_{K^*}(\tau)}{d\tau} = \frac{1}{\tau_{scatt}^K} N_K(\tau) - \frac{1}{\tau_{scatt}^{K^*}} N_{K^*}(\tau),
$$

$$
\frac{dN_K(\tau)}{d\tau} = \frac{1}{\tau_{scatt}^{K^*}} N_{K^*}(\tau) - \frac{1}{\tau_{scatt}^K} N_K(\tau),
$$
with  $1/\tau_{scatt}^{K^*} = \sum_i \langle \sigma_{K^*i} v_{K^*i} \rangle n_i, 1/\tau_{scatt}^K = \sum_j \langle \sigma_{Kj} v_{Kj} \rangle n_j,$ 

3) The yield ratio between K\* mesons and kaons

$$
R(\tau) = R_0 + \left(\frac{N_{K^*}^0}{N^0} - \frac{\tau_{scatt}}{\tau_{scatt}^K}\right) e^{-\frac{\tau - \tau_h}{\tau_{scatt}}}.
$$
  
with 
$$
R_0 = \frac{\tau_{scatt}}{\tau_{scatt}^K} = \frac{\tau_{scatt}^{K^*}}{\tau_{scatt}^K + \tau_{scatt}^{K^*}} \text{ and } \tau_{scatt} = \frac{\tau_{scatt}^K \tau_{scatt}^{K^*}}{\tau_{scatt}^K + \tau_{scatt}^{K^*}}
$$

May 26th 2017

May 26th 2017<br>Pukyong National University, Busan 25 Happy 8, HIM 25 Exploration for QCD phase diagram



## − The freeze-out condition of the pion

1) The scattering time for pions



 C. M. Hung and Edward V. Shuryak, Phys. Rev. C **57**, 1891 (1998) Ulrich Heinz and Gregory Cestin, Eur. Phys. J. ST, **155**, 75 (2008)





## **Conclusion**

- − Chemical and kinetic freeze-outs in heavy ion collisions
- 1) Heavy ion collision experiments provide various ways to investigate the phase diagrams of QCD 2) The study on the hadron production is helpful in identifying chemical and kinetic freeze-out conditions in heavy ion collisions 3) The final yield ratio between K\* mesons and kaons may reflect the condition at the last stage of the hadronic effects on K\* and K mesons, or the kinetic freeze-out temperature 4) The smaller ratio of K\*/K measured at the LHC energy may

indicate a lower kinetic freeze-out temperature compared to that

 at RHIC May 26th 2017

HaPhy & HIM 27 Exploration for QCD phase diagram Pukyong National University, Busan <sup>27</sup>