The QCD Medium Properties at Finite Baryon Density

- Search for the QCD Critical Point in HIC

Nu Xu^(1,2)

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China
 ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

QCD in the Twenty-First Century

Phase Diagram

Phase diagram:

A *map* shows, at given degrees of freedom, how does matter organize itself under external conditions. New orders, regularities, properties, ... emerge.

Water: H₂O

QCD Phase Diagram:

Structure of matter with color degrees of freedom, *quarks* and *gluons*.

QCD Phase Diagram (1953)

QCD Phase Diagram (2009)

- J. Cleymans, K. Fukushima, L.D. McLerran, H. Oeschler,
- R.D. Pisarski, K. Redlich, C. Sasaki, H. Satz, and J. Stachel

Experiments: Systematic measurements (*E*_{beam}, *A*_{size}) :

to extract numbers that are related to the phase diagram!

QCD Thermodynamics

The QCD Phase Diagram and the Beam Energy Scan

2000 – 2010 (2012): Top energy programs Discovery of sQGP

2010 - 2014: BES-I: 7.7, 11.5, 14.5, 19.6, 27, 39 GeV - QCD Critical Point

- Chiral effects

2019 – 2020: BES-II: 7.7, 11.5, 14.5, 19.6 GeV FXT*: 4.5, 3.9, 3.6, 3.0 GeV

2022 – 2025: BES-III: Fixed-target program

(1) Introduction

(2) Recent Results from BES-I at RHIC (i) Collectivity; (ii) Chirality; (iii) Criticality

(3) Summary and Outlook

Relativistic Heavy Ion Collider

Brookhaven National Laboratory (BNL), Upton, NY

Animation M. Lisa

STAR Detector System

Data Sets for BES-I Program

Particle Rapidity

- 1) Largest data sets versus collision energy
- STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Especially important for fluctuation analysis

Bulk Properties at Freeze-outs

200

Chemical Freeze-out: (GCE)

- Weak temperature dependence
- Centrality dependence $\mu_{\rm B}!$
- LGT calculations indicate Critical region above $\mu_B \sim 300 \text{ MeV}$?

Kinetic Freeze-out:

- Central collisions => lower value of T_{fo} and larger collectivity β_{T}

- Stronger collectivity at higher energy, even for peripheral collisions

- ALICE: B.Abelev et al., PRL109, 252301(12); PRC88, 044910(2013).
- STAR: J. Adams, et al., NPA757, 102(05); X.L. Zhu, NPA931, c1098(14); L. Kumar, NPA931, c1114(14)
- S. Mukherjee: Private communications. August, 2012

K/π Ratios and Baryon Density

- 1) In heavy ion collisions K^+/π ratio peaks at $\sqrt{s_{NN}} \sim 8$ GeV, K-/ π ratio merges with K^+/π at higher collision energy
- 2) Model: Baryon density peaks at $\sqrt{s_{NN}} \sim 8 \text{ GeV}$
- 3) At $\sqrt{s_{NN}}$ > 8 GeV, pair production becomes important

L. Kumar, et al. 1304.2969; J. Randrup and J. Cleymans, Phys. Rev. C74, 047901(2006)

The emergent properties of QCD matter

Collectivity

$$\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu} [s u^{\mu}] = 0$$

v₁ vs. Energy: Softest Point?

STAR: PRL112, 162301(2014)
STAR: QM2015

- Mid-rapidity net-proton dv₁/dy published in 2014 by STAR, except the point at 14.5 GeV
- 2) Minimum at $\sqrt{s_{NN}} = 14.5$ GeV for net-proton, but net-Kaon data continue decreasing as energy decreases
- At low energy, or in the region where the net-baryon density is large, repulsive force is expected, v₁ slope is large and positive!
- 4) Softest point for baryons?

- M. Isse, A. Ohnishi et al, PR <u>C72</u>, 064908(05)

- Y. Nara, A. Ohnishi, H. Stoecker, arXiv: 1601.07692

(b) NJL model: Sensitive to vector-coupling, **CME**, μ_B driven.

[J. Xu, et al., PRL<u>112</u>.012301(14)]

(c) Hydro solution: Chemical potential μ_B and viscosity η/s driven! [Hatta et al. PR <u>D91</u>, 085024(15); <u>D92</u>, 114010(15) //NP <u>A947</u>, 155(16)]

Collectivity: Implies the properties change at energy below 20 GeV, i.e. partonic => hadronic

- At high energy, strong collectivity and vanishing ratio of η/s => Perfect liquid of the strongly coupled plasma
- 2) Hadron formation via coalescence at T_C
- 3) At beam energy $\sqrt{s_{NN}} < 20$ GeV, netproton v₁ shows a dip and the break down of the number of quark scaling in v₂

The emergent properties of QCD matter

Chirality

The emergent properties of QCD matter

Criticality

Status on Predictions

0.171st order phase transition crossover 0.16T (GeV)0.15CEP 0.140.13DSE 0.120 0.06 0.080.10.12 0.14 0.020.040.16 μ (GeV)

Lattice QCD:

1): Fodor&Katz, JHEP 0404,050 (2004): (µ^E_B, T_E)= (360, 162) MeV (Reweighting)

2): Gavai&Gupta, NPA 904, 883c (2013): (μ^E_B, T_E)= (279, 155) MeV (Taylor Exp.)

3): F. Karsch (µ^E_B/ T_E >2, CPOD2016)

DSE:

1): Y. X. Liu, et al., PRD90, 076006(2014): (µ^E_B, T^E) = (372, 129) MeV

2): Hong-shi Zong et al., JHEP 07, 014(2014): (μ^{E}_{B} , T_E)= (405, 127) MeV

3): C. S. Fischer et al., PRD90, 034022(2014): $(\mu^{E}_{B}, T^{E}) = (504, 115) \text{ MeV}$

 μ^{E}_{B} = 300 ~ 504 MeV, T_E = 115~162, μ^{E}_{B} / T_E =1.8~4.38

Critical Point : Lattice & Experiments

XXII DAE-BRNS High Energy Physics Symposium 2016, University of Delhi, December 12, 2016 R. V. Gavai Top 12

Expectation from Model Calculations

 $\begin{array}{c|c}
 & \frac{\kappa_4}{\langle N \rangle} \\
 & & baseline \\
 & & \sqrt{s} \\
 & 20 & 200 \\
\end{array}$

Characteristic "Oscillating pattern" is expected for the QCD critical point but *the exact shape depends* on the location of freeze-out with respect to the location of CP
 Critical Region (CR)

M. Stephanov, *PRL107*, 052301(2011)
V. Skokov, Quark Matter 2012
J.W. Chen, J. Deng, H. Kohyyama, arXiv: 1603.05198, Phys. Rev. <u>D93</u> (2016) 034037

Thermodynamic function:

$\frac{p}{T^4} = \frac{1}{\pi^2} \sum_i d_i (m_i / T)^2 K_2(m_i / T) \cosh[(B_i \mu_B + S_i \mu_S + Q_i \mu_Q) / T]$ The susceptibility: $T^{n-4} \chi_q^{(n)} = \frac{1}{T^4} \frac{\partial^n}{\partial (\mu_q / T)^n} P\left(\frac{T}{T_C}, \frac{\mu_q}{T}\right) _{T/T_C}, q = B, Q, S$				
$\chi_{q}^{(1)} = \frac{1}{VT^{3}} \left\langle \delta N_{q} \right\rangle$ $\chi_{q}^{(2)} = \frac{1}{VT^{3}} \left\langle \left(\delta N_{q} \right)^{2} \right\rangle$	$\frac{T^2 \chi_q^{(4)}}{\chi_q^{(2)}} = \kappa \sigma^2$			
$\chi_{q}^{(3)} = \frac{1}{VT^{3}} \left\langle \left(\delta N_{q} \right)^{3} \right\rangle$ $\chi_{q}^{(4)} = \frac{1}{VT^{3}} \left(\left\langle \left(\delta N_{q} \right)^{4} \right\rangle - 3 \left\langle \left(\delta N_{q} \right)^{2} \right\rangle^{2} \right)$	$\frac{T \chi_q^{(3)}}{\chi_q^{(2)}} = S\sigma$			

Thermodynamic function ⇔ Susceptibility ⇔ Moments Model calculations, *e.g.* LGT, HRG ⇔ Measurements

Higher Moments and Criticality

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: *PRL*105, 22303(10); *ibid*, 112, 032302(14)
- S. Ejiri, F. Karsch, K. Redlich, *PLB633*, 275(06) // M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11),
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)
- PBM, A. Rustamov, J. Stachel, arXiv:1612.00702

BERKELEY LAB

Proton Identification with TOF

Published net-proton results: Only TPC used for proton/anti-proton PID. TOF PID extends the phase space coverage.

Efficiency Corrections

Rapidity Dependence

Sensitive to rapidity coverage!

Transverse Momentum Dependence

Sensitive to p_T coverage! Phase space coverage is important!!!

- 1) The results of net-Q and net-Kaon show flat energy dependence.
- 2) Net-p shows non-monotonic energy dependence in the most central Au+Au collisions starting at $\sqrt{s_{NN}} < 27$ GeV!

Net-proton Higher Moment

- 1) Flat energy dependence for 70-80% peripheral collisions
- Non-monotonic behavior in the most central 0-5%, and 5-10% collisions. Net-p follow protons, especially at lower collision energies

X.F. Luo, CPOD2014, QM2015

v₁ vs. Energy: Softest Point?

All Model Are Wrong!

At $\sqrt{s_{NN}} \le 10$ GeV: Data: $\kappa\sigma^2 > 1!$ Model: $\kappa\sigma^2 < 1!$ All models: suppress higher order net-proton fluctuations (UrQMD, AMPT, HRG and JAM do not reproduce data)

- 1) Z. Feckova, J. Steonheimer, B. Tomasik, M. Bleicher, 1510.05519, PRC92, 064908(15)
- 2) X.F. Luo et al, NP A931, 808(14)

ccccc

- 3) P.K. Netrakanti *et al.* 1405.4617, NP <u>A947</u>, 248(16)
- 4) P. Garg *et al.* Phys. Lett. **<u>B726</u>**, 691(13)
- 5) Baryon mean-field (attractive): Shu He et al., 1607.07276

Expectation from Model Calculations

 $\begin{array}{c|c}
 & \frac{\kappa_4}{\langle N \rangle} \\
 & & baseline \\
 & & \sqrt{s} \\
 & 20 & 200 \\
\end{array}$

Characteristic "Oscillating pattern" is expected for the QCD critical point but *the exact shape depends* on the location of freeze-out with respect to the location of CP
 Critical Region (CR)

M. Stephanov, *PRL107*, 052301(2011)
V. Skokov, Quark Matter 2012
J.W. Chen, J. Deng, H. Kohyyama, arXiv: 1603.05198, Phys. Rev. <u>D93</u> (2016) 034037

Key region for CP search

STAR Data: X.F. Luo et al, PRL112 (2014) 32302; X.F. Luo, PoS(CPOD14)019; QM plenary (15)

Nu Xu

Critical Region

- 1) Below $\sqrt{s_{NN}} \sim 15$ GeV the slope of net-p v₁ > 0 implies repulsive interactions. But, net-p Kurtosis > 1, indicating attractive force.
- 2) No model can reproduce both results. Especially, all predictions show suppression for net-p κ .
- 3) BES-II at RHIC: reduce error bars.
- 4) FTX experiments needed to 'contain' the possible critical region below $\sqrt{s_{NN}} \sim 8$ GeV.

Facility for Antiproton & Ion Research: FAIR

CBM Experiment at FAIR

(i) Dileptons (e, μ); (ii) High order correlations; (iii) Flavor productions (s, c)

- Enlarge rapidity acceptance 1)
- Improve particle identification 2)
- 3) Enhance event plane resolution

iTPC, EPD, eTOF **Dedicated two runs at** RHIC: 2019 & 2020

CBM Phase-0 Exp: eTOF at STAR

Install, commission and use 10% of the CBM TOF modules, including the read-out chains at STAR, starting in 2019

CBM participating in RHIC Beam Energy BES-II in 2019-2020:

- Complementary to part of CBM's physics program: $\sqrt{s_{NN}} = 3, 3.6, 3.9, 4,5, 7.7 \text{ GeV} (750 \le \mu_B \le 420 \text{ MeV})$ especially for *B*- & *s-hadrons* production and fluctuations

FAIR (CBM) construction starts 17, beam on target in 2025!

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-20 / 2011	3	206	160
14.5	300 / 20	2019-20 / 2014	2.5	264	156
11.5	230 / 12	2019-20 / 2010	5	315	152
9.2	160 / 0.3	2019-20 / 2008	9.5	355	140
7.7	100 / 4	2019-20 / 2010	14	420	140

Precision measurements, map the QCD phase diagram $200 < \mu_B < 420 MeV$

RHIC HI Physics Programs

FXT programs for QCD properties at high baryon density and the critical region

