HIM@2017.05.26

Direct Photon Elliptic Flow at RHIC and LHC

Chang-Hwan Lee *Pusan National University*

> in collaboration with Y.M. Kim (PNU), D. Teaney, I. Zahed (Stony Brook) PRC 90,025204(2014) & arXiv:1610.06213v2(2017)

Contents

- Motivation
- EM radiation from hadronic gas
- EM radiation from sQGP
- Direct Photon Elliptic Flow at RHIC & LHC
- Conclusion

a pure Korean word meaning Delightful, Joyful, Happy, ...

in 2011, Korean government approved a Rare Isotope Accelerator Project

RAON Site : Sindong in Daejeon

Slides from Youngman Kim (RISP)

Rare Isotope Science Project (RISP)

N = 28

N = 20

N = 8

• Goal : To build a heavy ion accelerator complex RAON for rare isotope science researches in Korea • **Project period : 2011.12 - 2021.12** • Total Budget : ~\$ 1.43 billion (Facilities ~ \$ 0.46 bill., Bldgs & Utilities ~ \$ 0.97 bill.) - include initial experimental apparatus **Future Extension Charged Lepton Flavor Violation** Proton number (Z) RAON Accelerator complex **ISOL + In-Flight Fragmentation Origin of Matter** N = 126**Applied Science** Nuclear Astrophysics Nuclear Matter Bio-Medical Science Super Heavy Element Search **Properties of Exotic Nuclei** Material Science High-precision Mass Measurement Neutron Science Nuclear Structure

Electric Dipole Moment and Symmetry

Nuclear Theory

Hyperfine Structure Study

RAON Concept

Status of Site(Cultural assets & Site renovation/building)

Eval of Cultural assets: Acc & Exp('15.12.~'16.09.), Support Bldg('16.06.~'16.11.)

Site Building : Acc & Exp('16.07.~'17.01.), Support bldg('16.08.~'17.06.)

Major Milestones

My recent works have been focused on neutron stars

- NS EoS / Dense Matter
- NS Binary Evolution / Gravitational Waves

for RAON

Some experience at Stony Brook

- Kaon production in heavy-ion collisions & kaon condensation in NS G.Q.Li, C.-H. Lee, G.E. Brown PRL 79 (1997) 5214; NPA 625 (1997) 372.
- Workshop on Kaon Production, Dresden, Germany, Dec. 1998
 - comparison of various transport codes
 - compared cross sections channel by channel, etc.
 - RVUU code by G.Q. Li, further developed by Zhang, Song & C.M. Ko

DJBUU project since 2015

- What is DJBUU
 DaeJeon Boltzmann-Uehling-Uhlenbeck
- **DaeJeon** is city name in Korea where **RAON** will be built
- Current collaboration members
 S. Jeon (McGill, chair) ** developed MARTINI for RHIC/LHC
 Y. Kim, K. Kim (RISP) ** participated with RBUU last time
 M. Kim, Y.M. Kim, C.-H. Lee (PNU)

New Physics: Sae Mulli, 66 (2016) 1563 http://dx.doi.org/10.3938/NPSM.66.1563

Some experience on Heavy Ion Collisions at Stony Brook

- Lee, Wirstam, Zahed, Hansson, PLB 448, 168 (1999)
- Lee, Yamagishi, Zahed, PRC 58, 2899 (1998)
- Lee, Yamagishi, Zahed, NPA 653, 185 (1999)

on the way from NS to RAON 2013-2014 Sabbatical Year at Stony Brook

better to start from where you have an advantage

in collaboration with Y.M. Kim (PNU), D. Teaney, I. Zahed (Stony Brook) PRC 90,025204(2014) & arXiv:1610.06213v2(2017)

Motivation: Why Photons & Dileptons ?

- No strong interaction
- Can provide direct information on dense medium
- Right time to revisit

CERES/NA45 Pb+Au 8.8 & 17.3 GeV

R.Rapp, arXiv:1306.6394

Key question : low-mass dilepton enhancement

STAR Dilepton Enhancement Au+Au 200 GeV

STAR Au+Au 200 GeV

STAR Beam Energy Scan

STAR Au+Au 200 GeV

arXiv:1305.5447

Elliptic Flow

ALICE Pb+Pb 2.76 TeV

arXiv:1212.3995

Elliptic Flow

Contents

- Motivation
- EM radiation from hadronic gas
- EM radiation from sQGP
- Direct Photon Elliptic Flow at RHIC & LHC
- Conclusion

Theory vs Experiment

Hadronic Gas & sQGP

Perturbative Approach

Quark Number Susceptibility Electric Conductivity Flavor Diffusion Constant

Photon & Dilepton Rates

Azimuthal Anisotropy

Lattice Simulation

Experiments

Rates, Hydro Evolution, Detector Acceptance

Dilepton rates from correlation functions

$$\mathbf{W}(q) = \int d^4 x e^{-iq \cdot x} \operatorname{Tr} \left[e^{-(\mathbf{H} - \mathbf{F})/T} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0) \right]$$
$$\mathbf{J}_{\mu}(x) = \sum_{f} \tilde{e}_f \, \overline{\mathbf{q}}_f \gamma_{\mu} \mathbf{q}_f(x)$$

Direct & Virtual Photon Rates

Dilepton rates from hadronic gas

Pionic Gas

$$\mathbf{W}^{F}(q) = \mathbf{W}_{0}^{F}(q) + \frac{1}{f_{\pi}^{2}} \int d\pi \mathbf{W}_{\pi}^{F}(q,k) + \frac{1}{2!} \frac{1}{f_{\pi}^{4}} \int d\pi_{1} d\pi_{2} \mathbf{W}_{\pi\pi}^{F}(q,k_{1},k_{2}) + \cdots$$

$$\int d\pi = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{n(E-\mu_{\pi})}{2E}$$

$$\mathbf{W}_{0}^{F}(q) = i \int d^{4}x e^{iq \cdot x} \langle 0|T^{*} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0)|0\rangle$$

$$\mathbf{W}^{F}(x,k) = i \ell^{2} \int d^{4}x e^{iq \cdot x} \langle -q(k)|T^{*} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0)|0\rangle$$

$$\mathbf{W}_{0}^{F}(q) = i \int d^{4}x e^{iq \cdot x} \langle 0|T^{*}\mathbf{J}^{\mu}(x)\mathbf{J}_{\mu}(0)|0\rangle$$
$$\mathbf{W}_{\pi}^{F}(q,k) = if_{\pi}^{2} \int d^{4}x e^{iq \cdot x} \langle \pi^{a}(k)|T^{*}\mathbf{J}^{\mu}(x)\mathbf{J}_{\mu}(0)|\pi^{a}(k)\rangle$$
$$\mathbf{W}_{\pi\pi}^{F}(q,k_{1},k_{2}) = if_{\pi}^{4} \int d^{4}x e^{iq \cdot x} \langle \pi^{a}(k_{1})\pi^{b}(k_{2})|T^{*}\mathbf{J}^{\mu}(x)\mathbf{J}_{\mu}(0)|\pi^{a}(k_{1})\pi^{b}(k_{2})\rangle$$

Vector & Axial Correlators, Spectral Functions

$$\mathbf{J}_{\mu} = \bar{q}\gamma_{\mu}Q^{\mathrm{em}}q = \mathbf{V}_{\mu}^{3} + \frac{1}{\sqrt{3}}\mathbf{V}_{\mu}^{8}$$

$$\mathrm{In}\left(i\int_{y}e^{-iq\cdot y}\langle 0|T^{*}(\mathbf{V}_{\mu}^{c}(y)\mathbf{V}_{\nu}^{d}(0)|0\rangle\right) = \left(-q^{2}g_{\mu\nu} + q_{\nu}q_{\nu}\right)\mathrm{Im}\mathbf{\Pi}_{V}^{cd}(q^{2})$$

$$\mathrm{Im}\left(i\int_{y}e^{-iq\cdot y}\langle 0|T^{*}(\mathbf{j}_{A,\mu}^{c}(y)\mathbf{j}_{A,\nu}^{d}(0)|0\rangle\right) = \left(-q^{2}g_{\mu\nu} + q_{\nu}q_{\nu}\right)\mathrm{Im}\mathbf{\Pi}_{A}^{cd}(q^{2})$$

		$I^G(J^{PC})$	Mass (m_i)	Decay width (G_i)	Decay constant (f_i)	
Π_V^I	$ \rho(770) $	$1^+(1^{})$	768.5	150.7	130.67	
	$\rho(1450)$		1465	310	106.69	
	$\rho(1700)$		1700	235	75.44	
Π_V^Y	$\omega(782)$	$0^{-}(1^{})$	781.94	8.43	46	
	ω(1420)		1419	174	46	
	ω(1600)		1649	220	46	
	$\phi(1020)$	$0^{-}(1^{})$	1020	4.43	79	
	$\phi(1680)$		1680	150	79	
Π^{I}_{A}	$a_1(1260)$	$1^{-}(1^{++})$	1230	400	190 (f_{o})	$\Pi^{I} = \Pi^{I}$
$\Pi_A^{\tilde{U}V}$	$K_1(1270)$	$\frac{1}{2}(1^+)$	1273	90	90	$m_V - m$
	$K_1(1400)$	2 . /	1402	174	90	$\prod_{\nu}^{Y} \equiv \frac{4}{3}$

Spectral Functions

Steele, Yamagishi, Zahed, PLB (1996) : SU(2) Lee, Yamagishi, Zahed, PRC (1998) : SU(3)

Mixing between vector & axial

$$\operatorname{Im} \mathbf{W}_{\pi}^{F}(q,k) = 12 q^{2} \operatorname{Im} \Pi_{V}(q^{2})$$

$$= 6 (k+q)^{2} \operatorname{Im} \Pi_{A} ((k+q)^{2}) + (q \to -q)$$

$$+ 8 ((k \cdot q)^{2} - m_{\pi}^{2}q^{2}) \operatorname{Im} \Pi_{V}(q^{2}) \times \operatorname{Re} \Delta_{R}(k+q) + (q \to -q)$$

$$= naive \ limit \ upto \ one \ pion$$

$$\operatorname{Im} \mathbf{W}^{F}(q) \approx -3 q^{2} \left[(1-4\kappa) \operatorname{Im} \Pi_{V}(q^{2}) + 4\kappa \operatorname{Im} \Pi_{A}(q^{2}) \right]$$

$$m \mathbf{W}^{T}(q) \approx -3 q^{2} \left[(1 - 4\kappa) \operatorname{Im} \Pi_{V}(q^{2}) + 4\kappa \operatorname{Im} \Pi_{A}(q^{2}) \right]$$

$$\kappa = \frac{1}{f_{\pi}^{2}} \int d\pi$$
decrease increase

$\operatorname{Im} \mathbf{W}^{F}(q) \approx -3 q^{2} \left[(1 - 4\kappa) \operatorname{Im} \mathbf{\Pi}_{V}(q^{2}) + 4\kappa \operatorname{Im} \mathbf{\Pi}_{A}(q^{2}) \right]$

Mixing between vector-axial : Chiral symmetry restoration

٠

As pion chemical potential increase

Reduction of Vector Contribution

due to the cancellation (no pion + pion contribution)

Enhancement of Axial Contribution

Lee & Zahed PRC 90, 025204 (2014)

Dilepton Rates up to two pion

Low-mass enhancement due to mixing between vector & axial

Lee & Zahed PRC 90, 025204 (2014)

Contents

- Motivation
- EM radiation from hadronic gas
- EM radiation from sQGP
- Direct Photon Elliptic Flow at RHIC & LHC
- Conclusion

sQGP strongly-interacting QGP

$$\operatorname{Im} \mathbf{W}_{2}^{R}(q) = \frac{N_{c} \tilde{\mathbf{e}}^{2}}{4\pi} q^{2} \left\langle \frac{\alpha_{s}}{\pi} A_{4}^{2} \right\rangle \left(\frac{4\pi^{2}}{T |\vec{q}|} \right) \left(n_{+} (1 - n_{+}) - n_{-} (1 - n_{-}) \right)$$

$$\operatorname{Im} \mathbf{W}_{4}^{R}(q) = \frac{N_{c} \tilde{\mathbf{e}}^{2}}{4\pi} \left[-\frac{1}{6} \left\langle \frac{\alpha_{s}}{\pi} E^{2} \right\rangle + \frac{1}{3} \left\langle \frac{\alpha_{s}}{\pi} B^{2} \right\rangle \right] \left(\frac{4\pi^{2}}{T |\vec{q}|} \right) \left(n_{+} (1 - n_{+}) - n_{-} (1 - n_{-}) \right)$$

 $\left\langle \frac{\alpha_s}{\pi} A_4^2 \right\rangle$ vanishes [Kaczmarek et al., arXiv:1301.7436]

$$\langle \alpha_s B^2 \rangle \approx \langle \alpha_s E^2 \rangle \approx \frac{1}{2} \times \frac{1}{4} \langle \alpha_s G^2 \rangle_0$$

 $\langle \alpha_s G^2 \rangle_0 = 0.068 \text{ GeV}^4$ [Narison, PLB (2009)]

 $\langle \frac{\alpha_s}{\pi} A_4^2 \rangle / T^2 \approx 0.4$

ланбон, г $(\alpha_s G / 0)$

 \rightarrow ruled out by Kaczmarek et al., arXiv: 1301.7436

sQGP T-indep E & B

Narison, PLB (2009)

$$\langle \alpha_s B^2 \rangle \approx \langle \alpha_s E^2 \rangle \approx \frac{1}{2} \times \frac{1}{4} \langle \alpha_s G^2 \rangle_0 \qquad \langle \alpha_s G^2 \rangle_0 = 0.068 \text{ GeV}^4$$

Lee & Zahed PRC 90, 025204 (2014)

Direct Photon Production from sQGP

Direct photons from hadronic gas

- use our results

Direct photons from sQGP

- use **HTL (hot thermal loop)** by Arnold, Moore & Yaffe [JHEP 05, 051 (2003)]

Contents

- Motivation
- EM radiation from hadronic gas
- EM radiation from sQGP
- Direct Photon Elliptic Flow at RHIC & LHC
- Conclusion

photon rates

Photon emission rates from hadronic gas

arXiv:1610.06213v2

photon rates at T=200 MeV

arXiv:1610.06213v2

QGP rate is higher than Hadronic Gas rate

prompt photon before thermalization

direct photon = prompt photon + thermal photon

prompt photon scaled by p+p

prompt photon fitting function

arXiv:1610.06213v2

$$q_0 \frac{d^3 N_{\gamma}^{\text{prompt}}}{d^3 q} = q_0 \frac{d^3 \sigma^{\text{pp}}}{d^3 q} \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}}$$

$$q_0 \frac{d^3 \sigma^{\rm pp}}{d^3 q} = A \left(1 + \frac{q_T^2}{B} \right)^{-n} \frac{\rm mb}{\rm GeV^2 c^{-3}}$$

RHIC A = 2.6955, B = 0.19943 and n = 3.0631

LHC A = 0.55269, B = 0.48304, and n = 2.6788

direct photon spectra for LHC

arXiv:1610.06213v2

 $(1/2\pi q_T) d^2 N_{\gamma}/dq_T dy [GeV^{-2} c^2]$

prompt photon dominate at high q_T

elliptic flow

Photon Elliptic Flow

$$\frac{d^{3}N_{\gamma}}{q_{T}dq_{T}dyd\phi} = \frac{1}{2\pi} \frac{d^{2}N_{\gamma}}{q_{T}dq_{T}dy} \left(1 + \sum_{n=1}^{\infty} v_{n\gamma}(q_{T}, y)e^{in(\phi - \Psi_{n\gamma}(q_{T}, y))} \right) + \text{h.c.}$$

$$v_{2\gamma}\{2\}(q_{T}, y) \equiv \frac{\langle \mathcal{V}_{n\gamma}(q_{T}, y)\mathcal{V}_{n\pi}^{*} \rangle}{\sqrt{\langle |\mathcal{V}_{n\pi}|^{2} \rangle}}$$

$$\mathcal{V}_{n\gamma}(q_{T}, y) \equiv v_{n\gamma}(q_{T}, y)e^{-in\Psi_{n\gamma}(q_{T}, y)}$$

Integrated event-by-event pion yield

$$\frac{dN_{\pi}}{d\phi} = \frac{1}{2\pi} N_{\pi} \left(1 + \sum_{n=1}^{\infty} v_{n\pi} e^{in(\phi - \Psi_{n\pi})} \right) + \text{h.c.}$$

PHENIX charged particle elliptic flow

arXiv:1610.06213v2

ALICE/CMS charged particle elliptic flow

arXiv:1610.06213v2

PHENIX direct photon elliptic flow

arXiv:1610.06213v2

prompt photon included (important for high q_T)

ALICE direct photon elliptic flow

prompt photon included (important for high q_T)

Conclusion

Low-mass dilepton enhancement

- indication of partial restoration of chiral symmetry
- caused by mixing between vector & axial correlators

Charged particle elliptic flow

- pion is better than (anti-)proton
- prompt photon dominates at high qT
- still misses v2 for both RHIC & LHC