Recent progress in fnite density lattice QCD towards high density

Keitaro Nagata(Kochi)

Exploration for QCD phase diagram Pukyong National University, Busan, Korea May 26, 27, 2017

Longstanding issues towards the understanding of origin of baryonic matters

- **where is QCD critical endpoint ?**
- **Is chiral symmetry restored in nuclei ?**
- **What is the EoS inside neutron stars ?**

This is challenging issue both for theory and experiment

- accessible range on the diagram, and measurable quantity is limited in experiments.
- sign problem occurs in finite density LQCD
- although many model studies
	- $-$ large uncertainty for the location of CEP $[$ e.g. Stephaov:hep-lat/0701002]
	- puzzle in NS with twice solar mass[Demorest, 1010.5788]

A reliable result is necessary to overcome the present situation

How is the situation of lattice QCD ?

MC-based approaches to fnite density

– reweighting, Taylor expansions, imaginary chemical potential, etc,

New approaches to go beyond the limit of conventional approaches

e.g. Complex Langevin method(CLM), Lefshetz thimble, tensor networks ...

Purpose of this talk: introduction of recent progress of fnite density lattice QCD

- 1. MC-based approaches: where is the limitation ?
- 2. complex Langevin to QCD in QGP phase
- 3. CLM to hadron phase:
	- what is difficulty?

MC-BASED APPROACH WHERE IS THE LIMITATION ?

Finite density lattice QCD and sign problem

$$
Z(\mu) = \int \frac{\mathcal{D}U(\det \Delta(\mu))^{N_f} e^{-S_G}}{\Delta(\mu) = \gamma_{\nu} D_{\nu} + m + \gamma_4 \mu}
$$
 O(V)-dimensional integral

- in usual LQCD simulations($\mu=0$)
	- importance sampling is to sample configs dominating path integral.
- At nonzero μ, the importance sampling is not available – det $\Delta(\mu)$ is complex at nonzero μ

Some ideas to access to nonzero µ using gauge confgs. obtained at µ=0

(Imaginary/isospin chemical potential are also used to generate gauge configs.)

Taylor expansions w.r.t µ

- e.g. free energy
\n
$$
-\frac{f(\mu)}{T^4} = c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + \cdots
$$

- c_n are defined at $\mu = 0$, and calculable in ordinary LQCD simulations
- available for any diferentiable observables
- in the context of HIC experiments
	- comparison of c_n with cumulants in BES experiments

KN, Nakamura, JHEP1204, 092(2012).

Canonical approach

Zn can be obtained at µ=0

 $Z_n = \langle n | e^{-\beta \hat{H}} | n \rangle$

2015/11/8 Keitaro Nagata, QUCS2015, Nara 14

Zn_B **exp(** n_B μ_B /T), (n_B : baryon number)

Non-monotonic behavior in hadron phase => more reliable estimation is needed for large n sector

Applicable limit

Overlap of gauge confgs:

 cf. microscopic states of ice and water

Conventional approaches are limited to small µ.

- larger µ, larger systematice errors
	- e.g. slow convergence of Taylor expansion
	- other approaches also have similar problem
	- less overlap

MC-based finite density LQCD for nonzero µ = real world + Lattice artifacts(finite size, etc) + unknown systematic errors

CLM TO QGP PHASE WHERE WE CAN STUDY

Developing new approaches has already begun

- e.g., complex Langevin method(CLM), Lefshetz thimble, Tensor network, etc
	- based on ideas diferent from importance sampling
	- some theories, which were out of scope of the conventional approaches, have already solved.
	- e.g chRMT at finite density
- Among them, CLM has already applied to finite density QCD.

(Real) Langevin method

solve the path integral using the Langevin equation

$$
Z = \int \prod dx_i e^{-S(x)}
$$
\n
$$
\frac{\partial x_i}{\partial t} = -\frac{\partial S}{\partial x_i} + \eta_i(t)
$$
\n
$$
T = \frac{\partial S}{\partial x_i} + \eta_i(t)
$$
\n
$$
T = \frac{\partial S}{\partial x_i}
$$
\n
$$
T = \frac{\partial S}{\partial x
$$

- expectation value of $O \sim$ Lagenvin time average $\langle O \rangle_{LM} = T^{-1} \int_0^T dt O(t)$
- Validity of LM is proved using the Fokker-Plank eq. $\langle O \rangle_{LM} = \langle O \rangle_{phys}$

Complex Langevin method(CLM)

- LM is available even for complex action [Parisi, Klauder('83)] $-$ because it is free from the probability interpretation of e^{-s}
- Langevin eq. for S complex

 $\partial_t x_i = -\partial_x S + \eta \quad \in \mathsf{complex}$

– Use of LM to complex S requires to extend real variables to complex [complexification]

$$
x \in \mathbb{R} \to z = x + iy \in \mathbb{C}
$$

– extend action (also observables) analytically

$$
S(x) \to S(z) = S(x + iy)
$$

CLM

- apply Langevin equation to z ∂z ∂t $=-\frac{\partial S}{\partial z}$ ∂z $+\eta(t)$
	- configs. move on extended phase space
- \cdot expectation value $=$ Langevin time average

$$
\langle O \rangle_{CLM} = T^{-1} \int_0^T dt O(t)
$$

random walk on complexified space

Is CLM valid ?

 $\langle O \rangle_{CLM} \stackrel{?}{=} \langle O \rangle_{phys}$

- equality holds if [Aarts, et. al. PRD81, 054508('10)].
	- S and O are independent of z^* =x–iy [holomophy]
	- configs. do not extend to y-direction

Application to LQCD at nonzero µ

- complexification
	- $-$ link variables $U_{n,\mu} \in \mathrm{SU}(3) \to \mathcal{U}_{n,\mu} \in \mathrm{SL}(3,\mathbb{C})$
	- ‒ action and observables are analytically continued in a holomorphic manner
	- gauge invariance is also extended $\mathcal{U}_{n,\mu} \rightarrow g_n \mathcal{U}_{n,\mu} g_{x+\hat{\mu}}^{-1}$
- Langevin equation

$$
\mathcal{U}_{n,\mu}(t+\epsilon) = e^{iX} \mathcal{U}_{n,\mu}(t),
$$

$$
X = \sum_{a} \lambda_a [(\mathcal{D}_{an\mu} S)\epsilon + \sqrt{2\epsilon} \eta_{an\mu}]
$$

wrong convergence problem in QCD

- Excursion problem
	- ‒ Langevin dynamics is unstable in the complexified direction of link variables

- this spoils a validity condition $(P(x,y)->0$ for large y)

Gauge cooling [Seiler, et al.('12), Sexty ('14)]

- unitarity norm $=$ "distance" from SU(3) matrices $\mathcal{N} = \sum \text{tr}[\mathcal{U}_{n,\mu}^{\dagger} \mathcal{U}_{n,\mu} + (\mathcal{U}_{n,\mu}^{\dagger})^{-1} \mathcal{U}_{n,\mu}^{-1} - 2]$ n,μ
- perform SL(3,C) trans. after every Langevin step

– proof of validity of gauge cooling [KN, Shimasaki, Nishimura, 1508.02377]

CLM to QCD in QGP phase

Fodor, Katz, Sexty, Toeroek('15)

• Simulation at $\mu/T \sim 4$, far beyond $\mu/T = 1$

CLM TO HADRON PHASE WHAT IS THE DIFFICULTY ?

Is CLM available to hadron phase ?

• another problem has been reported in some models

Chiral condensate vs quark mass in a ChRMT [Mollgaard, Splitorff, PRD88 (2013), 11,116007]

What happens in hadron phase ?

• Fermion matrix, $D+m$, has zero eigenvalues at nonzero μ , which *violates holomorphy of S*

Strategy

- Reducing lattice size [This talk]
	- zero-modes do not appear due to finite size efect
	- We introducenew criterion of correctness of CLM, and confirm the validity of the numerical results.
- on-going
	- generalization of gauge cooling(shown to work for RMT) [KN, Shimasaki, Nishimura(2016)]
	- deformation of action

Simulation setup

- Lattice setup
	- $-$ size : Nx=Ny=Nz=4, Nt = 8, β= 5.7
	- $-$ quark mass: ma = 0.05,

 $(m_{\pi}a/2 \sim 0.27$ at mean field analysis)

- $\mu a = 0 \sim 2$
- Staggered fermion + plaquette gauge
- Langevin setup
	- dtau = 10^{-4} , total Langevin time = 20ν -50 (preliminary)
	- gauge cooling max 50 steps after every Langevin step

Typical behavior when CLM fails CLM = phase quanch $\det \Delta(\mu) \rightarrow |\det \Delta(\mu)|$

2017 May 26, 27 K. Nagata, Exploration of QCD phase diagram, PNU, Busan 33

Quark number density (CLM vs Phase Quench)

• onset of quark density $- \mu \sim 0.3$ (PQ) $- \mu \sim 0.4$ (CLM)

new criteria for correctness

probability distribution of drift

$$
p(u;t) = \int \mathcal{D}\mathcal{U} \sum_{n,\mu} \delta(u - u_{n,\mu}(\mathcal{U})) P(\mathcal{U}; t),
$$

$$
u_{n,\mu} = \sqrt{(N_c^2 - 1)^{-1} \sum_a v_{an\mu} v_{an\mu}^{\dagger}}
$$

KN, Nishimura, Shimasaki, arXiv:1606.07627

> **larger u: near singularity large excursion**

Phenomenological understanding

Summary: progress in fd LQCD

- MC-based approaches
	- pseudo critical line, EoS,cumulants
	- only for small density near Tc
- Development of new approaches has begun – CLM, Lefshetz thimble, tensor networks, etc
- CLM + gauge cooling
	- allows us to study *high density* in QGP phase
- Hadron phase is still challenging – singular drift problem

Probability of drift terms

- $\mu \leq 0.3$: fall-off exponentially or faster \Rightarrow reliable
- how is for large mu?

Data in semi-log plot

Proof of correctness of LM (BU)

• Average of an observable in LM is given by

$$
\langle O(x^{(\eta)}(t))\rangle_{\eta} = \int dx \, O(x)P(x;t)
$$

$$
P(x;t) = \left\langle \prod_k \delta(x_k - x_k^{(\eta)}(t)) \right\rangle_{\eta}
$$

$$
\langle \cdots \rangle_{\eta} = \frac{\int \mathcal{D}\eta \cdots e^{-\frac{1}{4} \int d\tau \eta^2}}{\int \mathcal{D}\eta e^{-\frac{1}{4} \int d\tau \eta^2}}
$$

- According to the Fokker-Planck equation, P converges to $\lim_{t\to\infty} P(x;t) \propto e^{-S(x)}$
- Average of the observable converges to average in LM physical expectation value

2017 May 26, 27 K. Nagata, Exploration of QCD phase diagram, PNU, Busan

Canonical approach: observable on lattice

- **Reduction of fermion determinant**
	- **Q : transfer matrix**
	- **Qn : winding number n**

 (ic, α, x, y, z) x, y, z

Reduction formula [Gibbs, PLB 172, 53 ('86). Hasenfratz &Toussaint, NPB371, 539('92), Borici, PTP. Suppl. 153, 335 ('04). Alexandru &Wenger, PRD83, 034502 ('11). KN&AN, PRD82,094027 ('10). Adams, PRL92, 162002 ('04), PRD70, 045002 ('04).]

Numerical result

Setup: clover-improved Wilson fermion, RG-improved gauge action $Nf = 2$ mpi ~ 800 MeV $Nx=My=Nz=8$, $10, Nt=4$

gauge configurations at µ=0 are used (reweighting)

KN, S. Motoki, Y. Nakagawa, A. Nakamura, and T. Saito, PTEP. 01A, 013 (2012); arXiv:1204.6480.

From Gaussian to non-Gaussian as T decreases

possible criticisms

Sampling at µ = 0: large n component is suppressed exponentially

Systematic errors in tail of the distribution (due to finite # of statistics)

Careful analysis is necessary to conclude the finding the phase transitions.