

1

Light H+iggs Searches

Geumbong Yu Seoul National University

Heavy Ion Meeting @IBS, Nov 25, 2016

Outlook

- Introduction of H⁺ & two Higgs doublet model
- Variety of H⁺ Searches
- Search Strategy (light H⁺ cases)
- Results
- Summary

Standard Model & particles

Standard Model & particles

Complete list of particles in the model

Masses given to bosons & fermions by electro-weak symmetry breaking →one Higgs boson

so far properties agree with SM

Copyright @ Jeroen van Tilburg @ Nikhef

Standard "Model" & particles

Questions still remain -Dark energy/matter -Neutrino oscillation

Higgs, the one and only?

SM adopts minimal scalar field. If two Higgs doublets come into play, then we will see five Higgs bosons: h^0, H^0, A^0, H^{\pm}

Standard Model & particles

Copyright @ Jeroen van Tilburg @ Nikhef

Two Higgs Doublets Models (2HDM)

• HIGGS potential: $W^{\text{THDM}} = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right],$

• Mass:
$$M_{H^{\pm}}^2 = \mu^2 - \frac{v^2}{2}(\lambda_4 + \operatorname{Re}\lambda_5),$$
 $\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix}, \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$

$$v = \sqrt{v_1^2 + v_2^2} \simeq 246 \text{ GeV} \quad \tan \beta = \frac{v_2}{v_1}.$$

Model	d	u	l
Ι	Φ_2	Φ_2	Φ_2
II	Φ_1	Φ_2	Φ_1
III	$\Phi_1\&\Phi_2$	$\Phi_1\&\Phi_2$	$\Phi_1\&\Phi_2$
Х	Φ_2	Φ_2	Φ_1
Y	Φ_1	Φ_2	Φ_2

• Yukawa interactions (type-II):

$$H^{+}b\bar{t}: \quad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}[m_{b}(1+\gamma_{5})\tan\beta + m_{t}(1-\gamma_{5})\cot\beta],$$

$$H^{-}t\bar{b}: \quad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}^{*}[m_{b}(1-\gamma_{5})\tan\beta + m_{t}(1+\gamma_{5})\cot\beta].$$

H⁺ decays

key parameters: $tan\beta$, m(H⁺)

Minimal Supersymmetric SM (MSSM), type-II 2HDM

Charged Higgs (H⁺) Decays (depends on model)

Kei Yagyu et al., Phys.Rev.D80:015017,2009 10

Charged Higgs (H⁺) boson

Distinctive property: Charge!

H⁺ contribution @ B-factory

• H^+ can appear in place of W boson $m(H^+) < m(t)$ \boldsymbol{q} 0000 **g** \overline{q} н \overline{v} q00000

Charged Higgs (H⁺) boson

Indirect H⁺ search

- Distinctive property: Charge!
- H^+ can appear in place of W boson

Search Strategy for light H⁺ search M(H⁺): 90~160 GeV

What we search for?

- H⁺ searched in top quark decays
 - Measure $B(t \rightarrow H^+b)$ with sub-decays
- Dominant H^+ decay: τv
 - Difficulty in τ identification
- Dominant in low tan β or type-Y model: $c \overline{s} \ c \overline{b}$
 - Good identification & separation from SM ttbar

a

000

g

What we search for?

This talk focuses on hadronic decays

- H⁺ searched in top quark decays
 - Measure $B(t \rightarrow H^+b)$ with sub-decays
- Dominant H⁺ decay: τν
 - Difficulty in τ identification
- Dominant in low taneta or type-Y model: $car{s}$ $car{b}$
 - Good identification & separation from SM ttbar

Background SM processes: ttbar (~92%), single-top, tt+H/W/Z Diboson,W/Z+jets, QCD multi jets

Event Selection

- Use golden ttbar channel
- Single lepton trigger
- Final state object:
 - == one well-identified, isolated lepton
 - \geq 4 jets with p_T>25 GeV, $|\eta|$ <2.4
 - $\cdot \geq 2$ jets identified as having a secondary vertex (b-tagging)
 - MET \geq 20 GeV
- · Pileup contribution to jets and primary vertex are corrected
- Other loose leptons vetoed

q

Top-specific corrections

- Flavor dependent correction of reco jets to partons
- With this correction reconstructed mass (W⁺, H⁺, top) gets closer to the true value and its resolution improved by 7~9% in SM ttbar and H⁺ signal
- This correction is applied to leading four jets in both MC samples and data

TTbar kinematic fitter

$$\begin{split} \chi^{2} &= \sum_{\substack{i=l, 4 \text{ jots} \\ }} \frac{(p_{T}^{i, \text{fit}} - p_{T}^{i, \text{meas}})^{2}}{\sigma_{i}^{2}} + \sum_{\substack{j=x, y \\ }} \frac{(p_{j}^{\text{UE}, \text{fit}} - p_{j}^{\text{UE}, \text{meas}})^{2}}{\sigma_{\text{UE}}^{2}} \\ &+ \frac{(M_{l\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{bl\nu} - M_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{bjj} - M_{t})^{2}}{\Gamma_{t}^{2}}, \end{split}$$

- Assign leading four jets to four partons of ttbar
- TS corrections applied to the assigned jets
- Constrain masses but the hadronic boson

TTbar kinematic fitter

$$\begin{split} \chi^{2} &= \sum_{i=l, 4 \text{ iets}} \frac{(p_{T}^{i, \text{fit}} - p_{T}^{i, \text{meas}})^{2}}{\sigma_{i}^{2}} + \sum_{j=x, y} \frac{(p_{j}^{\text{UE}, \text{fit}} - p_{j}^{\text{UE}, \text{meas}})^{2}}{\sigma_{\text{UE}}^{2}} \\ &+ \frac{(M_{l\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{bl\nu} - M_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{bjj} - M_{t})^{2}}{\Gamma_{t}^{2}}, \end{split}$$

- Assign leading four jets to four partons of ttbar
- TS corrections applied to the assigned jets
- Constrain masses but the hadronic boson

$H^+ \rightarrow cbbar$ signal has 3 b-jets

B-jet assignment (3b-jets)

- In 2b-jets selection, both b-jets assigned to top-b-quarks only
- Two b-tagged jets assigned to direct top-b-quark and H⁺-b-quark
- Force lower p_T b-tagged jet to direct top-b-jet (for M(H⁺)≥130GeV)

Dijet mass templates

Systematic uncertainties

- All uncertainties are taken as shape systematics except
 - ttbar xsec, luminosity, pileup corrections to MC, scale factors (B-tagging,lepton)
- Jet-related uncertainty:
 - Jet energy correction&resolution/Flavour dependent uncertainty
- Top-related uncertainty:
 - TTbar p_T shape shift/NLO-vs-LO production/top quark mass shift
- MonteCarlo uncertainty:
 - MatrixElement event generation matching to Pythia hadronization/Factorization scale (Q²)/Pythia-vs-Madgraph ttbar p_T difference

Systematic uncertainties

- All uncertainties are taken as shape systematics except
 - ttbar xsec, luminosity, pileup corrections to MC, scale factors (B-tagging, lepton)
- Jet-related uncertainty:
 - Jet energy correction&resolution/Flavour dependent uncertainty
- Top-related uncertainty:
 - TTbar p_T shape shift/NLO-vs-LO production/top quark mass shift
- MonteCarlo uncertainty:
 - MatrixElement event generation matching to Pythia hadronization/Factorization scale (Q 2)/Pythia-vs-Madgraph ttbar p_T difference

Major systematic effects

Maximum likelihood fit on dijet mass

Light H+ searches (for non-t decays)

Limits calculated using Asymptotic Method

Analysis using 13TeV data in progress

No excess over SM processes so far.. Search Result

CDF Run II

 $t \rightarrow H^{\pm} b$ search

Results in pre-LHC era

Indirect limits from B-factories

CH+arged Workshop 2016

Summary

- Charged Higgs has been searched directly and indirectly from collider experiments
- So far results amazingly agree with the SM
- Most MSSM phase space (type-II 2HDM) has been excluded from both direct & indirect searches
- Still many models are proposed beyond the SM
 - No need to give up!
 - Live discussions between phenomenologists and experimentalists
- In light charged Higgs searches, current upper limit with 95% C.L. on $B(t \rightarrow H^{'}b)$
 - τν : 1.2~0.2 for m(H⁺) 80-160 GeV
 - cs-bar, cb-bar : 1.1~0.4 for m(H⁺) 90-150 GeV
 - · Limits can be used for anomalous boson decays from top quark: model-independent
- Stay tuned for more news from 13 TeV analysis!

Backup

Systematic uncertainties

Uncertainties in percentage	TTbar	non-TTbar	CH 120	Syst
Jet Energy Scale	3.4(3.3)	7.5-9.6(0.9-2.8)	4.6-5.3(5.0-5.9)	shape
Jet Energy Resolution	0.3(0.4)	1.1(1.5)	0.1-0.2(0.2-0.8)	shape
BtagSF (B/C)	3.6(5.7)	2.9-3.0(4.0-4.4)	1.2-2.1(5.6-5.8)	InN
BtagSF (UDSG)	0.2(0.3-0.7)	0.7-1.3(0.3-0.4)	0.1-0.2(0.2-0.7)	InN
L5 FlavorUncertainty(b)	0.1(9.0)	0.1-0.7(0.5-0.9)	0.3-0.4(0.2-0.6)	shape
L5 FlavorUncertainty(udscg)	1.0(9.0)	3. -4. (. - .8)	0.9-1.2(0.4-0.6)	shape
TTbar XSEC	6.5(20)	-	6.5(20)	InN
TTbar p⊤ Reweight		-		shape
NLO-vs-LO	8.3-8.5(8.0)	-	8.6-9.0(7.6-8.8)	shape
Top quark mass	5	-	5	shape
Normalization/Factorization scale	1.3-1.7(1.3-2.0)	-	4.0-4.2(6.8-7.2)	shape
ME-PS matching	0.6-0.8(0.8-1.4)	-	-	shape
Pythia-MG p _T (tt) difference	-	-		shape
Pileup Reweight		≈0.5		InN
Lepton SF		2		InN
Luminosity		2.6		InN
multi jet (anti-iso region shift)	-		-	shape